A Supernodal Approach to Incomplete LU Factorization with
Partial Pivoting

Xiaoye S. Li Meiyue Shaé
May 26, 2010

Abstract

We present a new supernode-based incomplete LU factanivatethod to construct a precon-
ditioner for solving sparse linear systems with iterativethods. The new algorithm is primarily
based on the ILUTP approach by Saad, and we incorporate aerwhtechniques to improve the
robustness and performance of the traditional ILUTP metfidese include new dropping strate-
gies that accommodate the use of supernodal structuresg iia¢kored matrix and an area-based
fill control heuristic for the secondary dropping strated¥e present numerical experiments to
demonstrate that our new method is competitive with therdtHe approaches and is well suited
for today’s high performance architectures.

1 Introduction

As problem sizes increase with high fidelity simulations derding fine details on large, three-dimensional
geometries, iterative methods based on preconditionetbiKgubspace techniques are attractive and
cheaper alternatives to direct methods. A critical compooéthe iterative solution techniques is the
construction of &ective preconditioners. Physics-based preconditionergjaite éfective for struc-
tured problems, such as those arising from discretizedapdifferential equations. On the other hand,
methods based on incomplete LU decomposition are stilrdegbas generally robust “black-box” pre-
conditioners for unstructured systems arising from a wéatge of application areas. A variety of ILU
techniques have been studied extensively in the past,dimgjudistinct dropping strategies, such as
the level-of-fill structure-based approach (IL)([28], numerical threshold-based approach [27], and
more recently, numerical inverse-based multilevel apgrda, 4]. The ILUK) approach assigns a fill-
level to each element, which characterizes the length oflibetest fill path leading to this fill-in [20].
The elements with level of fill larger thanare dropped. Intuitively, this leads to good approximate
factorization only if the fill-ins become smaller and smidls the sequence of updates proceeds. Imple-
mentation of ILUK) can involve a separate symbolic factorization stage terdeéne all the elements
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to be dropped. The threshold-based approach takes intagtcttee numerical size of the elements
in the factors, and drops those elements that are smalleratmumerical tolerance. A problem with
threshold-based approaches is th@alilty of choosing an appropriate drop tolerance. This nuktho
tends to produce better approximation and is applicabla ferder range of problems, but its imple-
mentation is much more complex because the fill-in patteratine determined dynamically. One of
the most sophisticated threshold-based methods is ILUBPosed by Saad [27, 28], which combines
a dual dropping strategy with numerical pivoting (“T” stanfdr threshold, and “P” stands for pivot-
ing). The dual dropping rule in ILUTRX 1) first removes the elements that are smaller thiom the
current factored row or column. Among the remaining elemesit mosip largest elements are kept in
order to control the memory growth. Therefore, the duatstyais somewhat in between the structural
and numerical approaches.

Our method can be considered to be a variant of the ILUTP agbrcand we modified our high-
performance direct solver SuperLU [9, 10] to perform inctete factorization. A key component in
SuperLU is the use of supernodes, which gives several pesfoce advantages over a non-supernodal
(e.g., column-wise) algorithm. Firstly, supernodes eaaé use of higher level BLAS kernels which
improves data reuse in the numerical phase. Secondly, dynfactorization traverses the supernodal
directed graph to determine the nonzero structures ahdU. Since the supernodal graph can be
much smaller than the nodal (column) graph, the speed ofothése can be significantly improved.
Lastly, the amount of indirect addressing is reduced whaldgrming the scatt¢ggather operations for
compressed matrix representation. Although the averageo$the supernodes in an incomplete factor
is expected to be smaller than in a complete factor becaudeopping, we have attempted to retain
supernodes as much as possible. We have adapted the droplgado incorporate the supernodal
structures as they emerge during factorization. Therefmnenew algorithm has the combined benefits
of retaining numerical robustness of ILUTP as well as adhge¥ast construction and application of
the ILU preconditioner. In addition, we developed a numtenaw heuristics to enrich the existing
dropping rules. We show that these new heuristics are Helpfmproving the numerical robustness
of the original ILUTP method.

A number of researchers have used blocking techniques &ircohincomplete factorization pre-
conditioners. Butthe extent to which the blocking was agapis rather limited. For example, in device
simulation, Fan et al. used the four-by-four blocks whichuws naturally when each grid point is as-
sociated with four variables after discretization of theqgled PDEs [14]. Chow and Heroux used a
predetermined block partitioning at a coarse level, andoiegl fine-grain dense blocks to perform
LU or ILU of the sparse diagonal blocks [6]. Henon et al. deped a general scheme for identifying
supernodes in ILU(K) [18], but it is not directly applicakitethreshold-based dropping. Our algorithm
is most similar to the method proposed by Gupta and George §b@ we extend it to the case of
unsymmetric factorization with partial pivoting, see $att3.2.

Our contributions can be summarized as follows. We adapti@tesic dropping strategies of ILUTP
in order to incorporate supernode structures and to accalamalynamic supernodes due to partial
pivoting. For the secondary dropping strategy, we proposaraa-based fill control method, which
is more flexible and numerically robust than the traditioo@lumn-based scheme. Furthermore, we
incorporate several heuristics for adaptively modifyimagious threshold parameters as the factorization
proceeds, which improves the robustness of the algorithnall, the implementation of the algorithm
has already been incorporated in the SuperLU Version 4e@sel downloadablelattp://crd.1bl.
gov/~xiaoye/SuperLU/.

The remainder of the paper is organized as follows. In SeQiave describe the test matrices



and the performance metrics that will be used to evaluatad¢imealgorithm. Section 3 describes in
detail the new supernodal ILU algorithm together with vasi@ropping strategies, and presents the
numerical results. In Section 4 we give some remarks on tipdeimentational and software issues.
Finally in Section 5 we compare our new code with the otheresathat use dierent approximate
factorization algorithms.

2 Notations and Experimental Setup

We useA to denote then x n codficient matrix of the original linear systerh,andU to denote the
incomplete triangular factors. The matfx= L + U — | represents the filled matrix containing bdth
andU, andM = LU is the preconditioning matrixD, D,, D, represent diagonal matriceB, P;, P,
represent permutation matricesS #lenotes the cardinality of the s8t We use array section notation
in Fortran and MATLAB & : t) to refer to a range of integers, 6+ 1,...,t). We use nnZ) to denote
the number of nonzeros in matr& Thefill ratio refers to the ratio of the number of nonzeros in the
filled matrix F over that in the original matriA. Sometimes we need to refer to the fill ratio of a certain
columnj, i.e., nnzE(, )))/nnz(A(;, j)). The fill ratio is a direct indicator of the memory requirent,
because our code requires very little working storage. Tmeber of operations is also related to the
fill ratio, although it usually grows more linearly.

Our test machine is a Cray XT5 with 664 compute nodes opesdtidrk National Energy Research
Scientific Computing (NERSC) Centér.Each node contains two 2.4 GHz AMD Opteron quad-core
processors, with 16 GBytes memory. We use only one core ofla.nBach core’s theoretical peak
floating-point performance is 9.6 Gflgpsc. We use PathScalathcc andpathf90 compilers with
-03 -£fPIC optimization flag.

We have used 232 matrices to evaluate our new ILU stratefilesse include 227 matrices from
the University of Florida Sparse Matrix collection [8], aBdnatrices from the fusion device simula-
tion [21]. These are all unsymmetric matrices of medium tgdssize. In particular, the 227 matrices
are all the real unsymmetric matrices in the UF collectioricwtare of dimension 5K—-1M and have
condition numbers below 18 The right-hand side vector is chosen such that the trudisolvec-
tor is of all ones. The iterative solver is restarted GMRE$wvaur ILU as a right preconditioner
(i.e. solvingP,AM~ly = P,b). The initial guess is a vector of all zeros. The stoppingedon is
Irk = b — Axdl> < 6 ||bll2, here we usé = 1078 which is in the order of the square root of IEEE dou-
ble precision machine epsilon. We set the dimension of thdorsubspace to be 50 and maximum
iteration count to be 500. We test ILUT® @ith different values of, such as 1%, 1076, and 108.

We mainly use two performance metrics to assess the algmwitmemory requirement as reflected
by the amount of fill in the preconditioners and the total Solutime. To compare dierent solvers, or
different ILU parameter configurations, we use the performarafgs similar to what was proposed
by E. Dolan and J. Moré in [11] to present the data. The idepesformance profile is as follows.
Given a setM of matrices and a s&® of solvers, for each matrimn € M and solvers € S, we use
fr(m, s) andt(m, s) to denote the fill ratio and total time needed to satvby s. If sfails to solvem for
any reason (e.g. out of memory, or exceeding maximum itardimit), we setfr(m, s) andt(m, s) to
be +co (in practice, a very large number that is outside the rangmiointerest is sfiicient). Then, for
each solvess, we define the following two cumulative distribution furarts as the profiles of fill ratio
and time ratio, respectively.

@http://www.nersc.gov/nusers/systems/hopper/



#{me M: fr(m s) < x}

Prob = R
£ (S X) M , Xe€
and
#{me M: il < %)
Proky(s, x) = 2 XeR

#M ’

Intuitively, Probs (s, X) shows the fraction of the problems thatould solve within the fill ratia,
and Prob(s, X) shows the fraction of the problems th&tould solve within a factor ok of the best
solution time among all the solvers. Therefore, the ploifiérent solvers in the—Prob; or x-Proby
coordinate can be used toffdirentiate the strength of the solvers in the criteria of éitia or time
ratio—the higher the curve, the more problems the corregipgnsolver could solve under the same
fill or time limit.

We caution that even though the performance profile is a goWwgol to present visually the
overall performance comparison offidirent solvers, it cannot show thefdrence of the solvers for
each individual matrix. Therefore, in addition to the penfance profiles, we will show other specific
results when there is a need.

3 Incomplete Factorization with Supernodes

3.1 Left-looking supernodal ILUTP

Our base algorithm framework is the left-looking, partiaigting, supernodal sparse LU factorization
algorithm implemented in SuperLU [9, 10]. The factorizatialgorithm proceeds from left to right,
using a supernode-panel updating kernel. A panel is simplgtaf consecutive columns, which is
used to enhance data reuse in memory hierarchy; it enaldesf bevel 3 BLAS. The panel size is an
algorithmic blocking parameter. At each step of panel fazadion, we obtain a panel in the factor
and a panel in th& factor.

Several preprocessing steps are used in SuperLU beforadiagifation kernel, including rgleolumn
equilibration and sparsity-preserving reordering of tbiimns. In the case of incomplete factoriza-
tion, we found that it is often beneficial to include anothexgrocessing step to make the initial matrix
more diagonally dominant (e.g., via a maximum weighted ifgamatching algorithm). For this, we
use the HSL subroutine MC64 [12, 19], which is based on therilgn developed by Olschowska
and Neumaier [25]. The algorithm finds a permutation and ¢lgcolumn scalings so that the scaled
and permuted matrix has entries of modulus 1 on the diagamhlod-diagonal entries of modulus
bounded by 1. We tested 232 matrices with or without MC64, fandd that using MC64, the ILU-
preconditioned GMRES converge for 203 matrices with aved®jiterations, whereas without MC64,
only 170 matrices converge and the average iteration ceultt.i

Our incomplete factorization algorithm retains most of altgorithmic ingredients from SuperLU,
with the added dropping rules that are applied toltlzadU factors on-the-fly [22]. The description of
the algorithm is given as Algorithm 1. The steps markeldad correspond to the new steps introduced
to perform ILU. Note that the factorization is performed ba tatrixP; PoD; ADP!, whereD, andD.
are diagonal scaling matricely is the row permutation matrix returned from MC@2, is the column
permutation matrix for sparsity preservation, #hds the row permutation matrix from partial pivoting.
D, D¢, Pg andP, are obtained before the factorization, d@ds obtained during factorization.



Algorithm 1. Left-looking, supernode-panel ILU algorithm
1. Preprocessing

panel and a topological order of updates;
2.2) Panel factorization:
FOReach updating supernode DO
Apply triangular solve to obtain the part;
Apply matrix-matrix multiplication to obtain the part;
END FOR
2.3) Inner factorization:
FOReach columny in the panel DO
Update the current colump
Apply the dropping rule to the U part;
Find pivot in this column;
(optional) Modify the diagonal entry to handle zero-pivot breakdown;
Determine supernode boundary;
IF column j starts a new supernode THEN
Apply the dropping rule to the newly formed supernodelL(:,s: j— 1),
wheresis the first column of this supernode;
END IF
END FOR
END FOR

Our primary dropping criteria are threshold-based and tkihe ILUTP variants [27, 28]. That is,

1.1) (optional)Use MC64 to find a row permutatid®y and row and column scaling factars
D, andD. such that the elements on the diagonaPgb; AD. has the largest absolute
values.

1.2) If Step 1.1) is not performed, do a simple row & column equidiion to obtainD,; AD,
in which the element of largest absolute value in each rowcahdnn has value 1;

1.3) Compute a fill-reduction column permutati®g;

2. Factorization oPoD; AD:P!
FOReach panel of columns DO
2.1) Symbolic factorizationdetermine which supernodes to the left will update the citrre

while performing Gaussian elimination with partial pivadi we set to zero the entrieslirandU with
modulus smaller than a prescribed relative thresholdherer € [0, 1].
Since our compressed storage is column oriented for bathdU, the dropping rule is also col-



umn oriented. The upper triangular mattikis stored in a standard compressed column format, we
can easily remove the small elements while storing the neahgputed column into the compressed
storage, using the first criterion given in Figure 1.

The lower triangular matrixt is stored as a collection of supernodes. Recall that a sogern
consists of a range ( s) of columns inL with the triangular block on the diagonal being full, and the
identical nonzero structure elsewhere among the columnsg@al is to retain the supernodal structure
to the largest extent as in the complete factorization. oahd, we either keep or drop an entire row of
a supernode when it is formed at the current step. This idagiini what was first proposed in [16, 23]
for incomplete Cholesky factorizations. This supernodapging criterion is the second rule shown in
Figure 1. Since partial pivoting is used, the magnitude efalements ik is bounded by 1, and so the
absolute quantity is the same as the relative quantity.

Threshold-based dropping criteria for ILU(

1) Dropping elements it: If |ujj| < 7l|A(;, j)lle, We Selu;j to zero.

2) Dropping elements ih: In a supernodé.(:, s : t), if RowSizé (i,s: t)) < 7, we
set the entirg-th row to zero, wheres andt are the first and last columns of the
supernode.

Figure 1: The threshold-based dropping criteria, iitbupernode.

Note that we us®owsS iz@ function to determine whether the size of a row as a whatensidered
to be small and can be dropped. There are several possiiliidefine this metric. In our code, we

provide three choices: (BowSiz&) &' |1x1/m, (2) RowSizé&x) E'|xlo/ v, and (3)RowS izex) =
[IXlleo, Wheremis the number of columns in the supernode (hnes t— s+ 1). The first two metrics can
be interpreted as “generalized mean” of the vector elemeritsreas the last one is a standard vector
norm. The following relations hold for the three metrics adio

[1Xl2

X
< X2
m Vm

< [Xleo

In case (1), a row can be dropped when the average magnitutie efements is small, but some
elements much larger thancan also be dropped. This is the same criterion used by Gumpta a
George [16] in their IC algorithm. Our experiments showedt tihis metric is much worse than (3)
for ILU probably because many large elements are droppedase (3), the use @b-norm implies
that when rowi is dropped, the magnitude of every element in this row is En#éhanr, and hence
these elements would also be dropped in a column-wise #iguoriTherefore, from local viewpoint,
this supernodal dropping rule retains more elements cagdp@ar a column-wise algorithm. In other
words, in terms of the amount of dropping, (1) is most aggvesand (3) is most conservative.

Throughout the rest of the paper, the supernodal ILUTP ntwiare used. In Section 3.3, we
will show the numerical results comparing our supernodal tb the column-wise ILU when setting
supernode size to be one.



3.2 Adaptive, area-based dropping rules to limit memory use

ILUTP(7) works well if there is sfficient memory, but it may still gter from too much fill. We employ
two new ideas to further control the amount of fill. One is dyinzally adjusting parametep in the
dual dropping rule, another is dynamically adjustingWe use an area-based fill estimation to adjust
both parameters, which will become clear soon.

Several methods were proposed earlier for the secondappithigprule using parametgr In Saad’s
original ILUT(p, 7) approach [27]pis the maximum number of nonzeros (not the level-of-fillpaied
in each row ofF (in a row-wise algorithm), and is fixed on input. Gupta and @easuggested using
p(j) = ¥ - nnz@A(:, j)) for the j-th column instead of a constant, wherés an upper bound of the fill
ratio given by a user [16]. They also proposed a method of cuimgp a secondary dropping tolerance
by an interpolation formula rather than sorting the largesnhtries, which is cheaper than the original
ILUT(p, 7). According to our experience, Gupta’s heuristic depeadsely on the distribution of the
locations of the nonzeros I, and the fill ratio can be either very large or very small. TeEgrmance
benefit realized by not sorting is also limited. In fact, gaytis not necessary here; a selection algorithm
is more suitable, because we only need to findgtle largest element. If the number of nonzero entries
in F(:, j) isk, the p-th largest element can be found by quicksele&{k) time on average, which is the
same as interpolation. Even for a sorting-based seleclimitom, the complexity is merel@(klog k)
on average using quicksort and is reasonably fast in peadar implementation uses quickselect.

We propose a new adaptive strategy for chooginghich takes into account the overall fill ratip
to the current step. Given a user-desired upper bound of thralbfi# ratio y, we define a continuous,
upper bound functiorf(j) for each columnj, f : [1,n] — [0, +o0), which satisfiesf(n) < y. Then at
the j-th column, if the current fill ratio

nnzFCG,1: )

nnzA(;,1: ) @)
exceedsf(j), we choose a largest possible valpesuch that when we keep the larggselements,
the current fill ratio is bounded b¥(j). This criterion can be adapted to our supernodal algorithm
as follows. For a supernode withcolumns andj being the index of the last column of the current
supernodep may be computed as

o= max{ f(j) - nnzAG, 1 : j))k— nnzF(G,1:j - k))’ k}. @

In other words, if we keep the largegtrows of this supernode, the current fill ratio is guaranteed n
to exceedf(j). The secondkterm in max...} is to ensure that we do not drop any row in the diagonal
block of the supernode. We call this schemeaggm-basedLUT( p, 7), with adaptivep. This is more
flexible than the column-based method in that it allows laegeount of fill for certain columns as long
as the cumulative fill ratio in the previous columns is small.the end of factorization, the total fill
ratio is still bounded by because of the conditiof(n) < .

The above description of the area-based strategy is geaadanay be used in any implementation.
We now introduce a specifit(j) that is suitable for the SuperLU implementation. SihcandU are
stored in diferent data structures, and droppind.iis invoked after a complete supernode is formed,
it is sensible to use fierent f(j) for L andU. For a column-based method, at th¢éh column, the
simplest way is to splif proportionally withj : (n— j) ratio forU(;, j) andL(:, j). For our area-based
approach, we may choose two functiorfig(j) for L and fy(j) for U, as long asf (n) + fy(n) <vy. A
simple way is to assigr_ (n) and fy(n) to be the areas df(;, j) andU(;, j) relative toF(;,1 : j), as




follows:

ful) =27 fl)=(1- ) ©

Then we split the fill quota proportionally witfy (j) : fL(j) ratio.

A problem is that dropping ity could be very constraining for smgll Then, we can simply use
fu(j) = y/2. With this, even though it could happen thggj)+ fu(j) > v in the middle of factorization,
fL(n) + fy(n) < y holds in the end, and the total memory is still bounded. Sweealo not apply the
dropping rules toward the end in order to reduce the numbeermf pivots (see Section 3.4), we need
to reserve some quota for them by reduciingj) + fu(j). In addition, we need to allow more fill-ins in
L than inU, because the dense diagonal blocks are storedand some small entries inare located
in the rows with large norm, hence are not dropped. As a resalpropose to use

fuld) =2 x90% 10 =(1- o) O

In conjunction with the dynamic, area-based strategy farosing p, we devised an adaptive
scheme for choosingas well. Specifically, let(1) = ro be the user-input threshold, at colujnf the
fill ratio given by Equation (1) is larger thai(j), we increase at the next stept(j+1) = min{1, 2r(j)},
forcing more elements to be dropped. Otherwise, we decreass(j + 1) = maxXto, 7(j)/2}, retaining
more entries. Note that we always mainta(t) € [ro, 1]. An advantage of this adaptiveis that even
though the initiakr chosen by the user is not good, the code can self-adjust fy@seit proceeds.

We now present the results of the tests comparing variowspter settings. When the secondary
dropping is used, we sgt= 10. Our ILU configurations include the following:

1. area-based adaptiper = 1074
area-based adaptiyer = 10°8;
. area-based adaptivery = 107%, no secondary dropping;

. ILUTP@), T = 107%;

. ILUTP(p,7), p=7y - nnzA)/n, 7 = 10°8;

2.

3

4

5. ILUTP(p,7), p = y-nnz@)/n, r = 1074

6

7. column-based adaptiye(i.e., p(j) = v - nnzA(, j))), 7 = 107%;
8

. column-based adaptive( i.e., p(j) =y - nnzA(., j)) ), T = 1078,

Figure 2 shows the performance profiles of the fill ratio aredtiime ratio for the 232 test matrices.
We see that a smatl such as 16 is generally not good, because it generates too much fill akebt
long to compute the solution. It is therefore néli@ent to rely only on the secondary dropping rule.
The threshold-based dropping criterion in Figure 1 musy plaignificant role. If we do not use the
secondary dropping, the fraction of the problems solvetiwi fill constraint is still smaller than after
using our area-based secondary dropping, see the cunesponding to “ilutp(le-4)” in Figure 2(a).
Both the non-adaptive and the adaptive column-based seppddopping heuristics are much worse
than the area-based secondary dropping. This is clearly fsem the bottom four curves in both
Figures 2(a) and 2(b).



A key conclusion is that our new area-based scheme is muchk mbust than the column-based
scheme; it is also better than ILUTR(When the fill ratio does not exceed the user-desirddO in
these cases). ILUTP) becomes better only when the fill ratio is unbounded (illawing it to exceed
v). This is consistent with the intuition that an ILU precaimher tends to be more robust with more
fill-ins.

Profile of Fill Ratio Profile of Time Ratio
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Figure 2: Performance profiles after incorporating the sdaoy dropping rulesy = 10.

It is possible that the actual fill ratio is larger than thegeteparametey although this occurs
occasionally. There are two reasons for this to occur. lifirstir dropping rules do not drop entries in
the dense diagonal blocks. Therefore, when there are sageedapernodes ib, these blocks would
contribute to a large memory growth everrifs large. Secondly, we never drop any entries in several
trailing columns, and usually there are a lot of fill-ins todsthe end of factorization. If the user wants
the memory to be absolutely under a certain limit, we recondribat a slightly smalley be used.

Figure 2(b) shows the runtime comparison of the solvershimflot, the matrices with fill ratio
larger than 10 are considered as failure. Thus, the congpaissmade under the same memaory con-
straint, and none of the solvers are allowed to consumefiignily more memory than the others. The
top three solvers are much better than the others. The assttadaptivey or adaptiver schemes
have quite similar performance, with the former having ghtledge over the latter.

Taking into account both memory and time, we see that thenslecy dropping helps achieve a
good trade-fi, with controlled fill-in and the solver not being much slowEither the scheme corre-
sponding to the line with “square” (area-based adappive = 107%), or the scheme corresponding to
the line with “right triangle” (adaptive, 7o = 107%) can be used as a default setting in the code.

3.3 Comparison of the supernodal and the column-wise algahms

We performed the experiments to compare the supernodal hdUtlae column-wise ILU (by set-
ting maximum supernode size to be one). We use both metid3d®'S iz&x) def IXll2/ vYmand (3)
RowS izé&x) def Xl to measure the row size in the dropping rule 1) of Figure 1.



Table 1 compares various performance metrics of the sugatii8-1LU) versus column-wise (C-
ILU) ILU. Each number in the table is the average of the cqroesling metric taken over the number
of matrices that both versions succeed. As can be seen, eives metric in the dropping rule, S-
ILU is faster than C-ILU, although the speed advantage isgneat compared to that in a complete
factorization. This is mainly due to two reasons: 1) becatisiee row dropping criterion for supernode,
S-ILU has more fill-ins and floating-point operations, andH® average supernode size is small after
dropping (less than 3 columns on average). The more fillnrteé supernodal versions translate into
many more floating-point operations, especially in the eorative case whesv-norm is used, S-1LU
performs over 3.5 times the operations of C-ILU. The largerthe supernodes, the more fill-ins and
operations are incurred in S-1ILU. From our experiments wabthat we have to set a smaller diifor
the maximum supernode sizegxsupey than in complete factorization. (That is, when a supernode
size exceedmaxsupercolumns, we will break this supernode into two supernodé€xherwise the
extra operations wouldffset the BLAS-3 benefit. For example, in S-ltbaxsuper= 20 strikes a
good balance in overall speed, whereas in the complete Ldfter usemaxsuper= 100.

In these tests, we excluded one mat@gel3 because the C-ILU factorization time is about 1000x
slower than the average, and the inclusion of this matrixldveaverely skew the statistics of the mean
metric.

Factor construction GMRES Total time
fill-ratio | s-node sizg flops | Factor| Iters | One Trisolve| Iter
(columns)| (10% | time time | time
RowS iz&) def %; this includes 138 matrices that both versions succeeded
S-ILU 4.2 2.80| 7.60| 39.69| 21.6 0.0092| 2.93 42.68
C-ILU 3.7 1| 2.65| 65.15| 20.0 0.0079| 2.55 67.75
RowS izé&x) def IIXllo; this includes 134 matrices that both versions succeeded
S-ILU 4.2 2.72| 9.45| 54.44| 20.5 0.0109| 3.40 57.90
C-ILU 3.6 1| 2.58| 74.10| 19.8 0.0090| 2.88 77.04

Table 1: Comparison of supernodal ILU (S-ILU, withaxsuper= 20) and column-wise ILU (C-ILU,
with maxsuper= 1) using the “mean” statistics about various metrics. Thee§ are in seconds.
7=10%vy=10.

3.4 Handling breakdown due to zero pivots

In the case of LU factorization with partial pivoting, zeriwqts may occur due to humerical cancella-
tions when the matrix is nearly singular. However, for aromplete LU factorization, zero pivots may
occur more often because of dropping, which has nothing teittonumerical cancellation.

To illustrate this, let us consider the following twok2 matrices:

ab c O
c O a b|’

Assume that the column permutation is the identity. Thug|ik  |al, the (2,1) entry will be
dropped, and the (2,2) entry will become zero, causing ILUreak down. Assuming that b, andc
are drawn independently from the uniform distribution #1[1], we have:

A= . A= (bc # 0).
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PI’OHUQZ =0} = % > 0.

In general, let us assume that the nonzero entries of a rmpraimatrix satisfy a uniform distri-
bution in [-1, 1]. Then for a given sparsity pattern, if there exist a ronnpaationP and a column
such that PA)(j : n,j) = 0and PA(1 : j— 1,1 : j—1)is nonsingular, the probability of encoun-
tering a zero pivot in thg-th column would be positive. We can show thatZ)"®-" is a lower
bound of the probability. LeB = PA and suppose thgtis the minimum column index which satisfies
B(j : n,j) = 0. The probability that all the pivots of the firgt- 1 columns are diagonal entries Bf
and all the éf-diagonal entries are dropped (with this condition,, dedigithere will be a zero pivot in
the j-th column) is

M . . -1 7\NNz@(i+1n,i))
[ 1] ] Protsceiy <e.on = [](5)
i=1 k>i i1
7\NzA(,1:j-1))-(j-1) 7\NNz@)-n
g
2 2

The last inequality comes from the fact that there is at leastnonzero element in each column of a
nonsingular matrix.

On the other hand, if is the first column index that encounters zero pivot, the imatust satisfy
the condition thatRA)(j : n,j) =0and PA)(1:j—-1,1:j-1)is nonsingular.

Usually, many zero pivots occur in the last columns, becduisemore probable at the end than
in the beginning that all the nonzero entries of a column arenpted to the upper triangular part. To
mitigate this, we stop dropping when the column index isdatthpan man — 2Ns, n x 95%}, where
N is the maximum size of a supernode. That is, the factorizai@imost finished. According to our
experiment, this helps reduce a large fraction of the zerotpi

We have devised a simple adaptive mechanism to handle tregigit when a zero pivot indeed
occurs. At columrnyj, when we encounter;j = 0, we set it tarJJA(:, j)ll to ensure the factorization can
continue andJ is nonsingular after the factorization. This is equivalienadding a small perturbation
7 to l;; at the current step. if = 7, the perturbation we add t@; will not exceed the upper bound
of the error propagated by dropping elements. In our codeshweser(j) = 10-20-1/" which is an
increasing function with the column index, rather than astant. This prevents the diagonal entries of
U from being too small; otherwise, it could result in a veryadnditioned preconditioner.

Adding a small perturbation on the zero diagonal is a simgheady to enable the factorization to
complete. This is an acceptable solution when not many zeoispoccur, otherwise, the precon-
ditioner can be quite ill-conditioned even though the fezagion completes, making this iffective.
Some other methods were proposed to handle the breakdoam asuhe delayed pivoting [16] and
the multilevel method [3]. We plan to investigate them in fineire. But our comparison showed that
our current ILU scheme is very competitive with a multile¥eU scheme as in ILUPACK [4], see
Section 5.

3.5 Modified ILU (MILU)

The MILU technigues were introduced to reduce tffea of dropping by compensating for the dis-
carded elements [28]. For systems arising from the digeritin of second order elliptic PDEs, it is
generally admitted that the modified incomplete CholeskyQMactorization is more féicient than
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the unmodified one [13, 15, 17, 24, 29]. Whereas for genesd€nys, very little is shown either theo-
retically or empirically whether MILU always helps. Our emgal experience shows that sometimes
it can be better than the unmodified ILU.

The basic idea is to add up the dropped elements in a row omeoto the diagonal oJ. The
commonly used strategy has an appealing property thatsepres the row-sum relatidh Ae = LUe
for a row-wise algorithm or column-sum relatiehP; A = e LU for a column-wise algorithm, where
L andU are incomplete factors. Algorithm 2 gives the proceduresidgsm a column-wise MILU with
partial pivoting. Note that for the upper triangular péjt= u;j, whereas for the lower triangular part
fij = liju;; because of division by the diagonal enfry.

We have modified the above column-wise MILU procedure to menodate our supernodal drop-
ping criteria. Recall that in Algorithm 1, we apply the drapgp rule 2) in Figure 1 only after a new
supernode i is formed. The consequence of this “delayed” dropping is @h#he time a column is
processed for pivoting, the computed semay contain fewer dropped entries and the diagonal is not
compensated enough. Therefore, the column-sum relatioot isreserved.

Algorithm 2. Classical column-wise MILU for column j

(1) Obtain the current filled columR(:, j);

(2) Pivot: Choose pivot row; such that = arg max.j |fijl; Swap rows andj;

(3) Apply a dropping rule té-(:, j);

(4) Compute the sum of dropped entriedHi(, j): s= Ygroppedfij; Setfjj = fjj + s
(5) Separaté) andL: U(L1:j,):=F@:j,j); L3G:n:=FG:n/F(,]));

Algorithm 3. SMILU-1: Supernodal MILU for column |

(1) Obtain the current filled columR(:, j);
(2) Apply dropping rule 1) of Figure 1 tB(1: j, j),and seU(1:j,j) :=F(@: }, ));
(3) Compute the sum of the dropped entrie8)ify, j): s= 3 groppedUi;
(4) Pivot: Choose pivot row; such that = arg max; | fjj + s;
Swap rowd andj, and seu;; := fijj + s
(5) IF j starts a new supernode THEN
Let (r : t) be the newly formed supernodé;= j — 1)
Apply dropping rule 2) of Figure 1 to the supernddg,r : t);
For each columik in the supernoder (< k < t):
compute the sum of the dropped entri€g:= ¥’ groppedlik:
SetUkk := Uxk + Sk + Uk,
END IF;

Our supernodal version of the MILU strategy works as follower each column ofJ, we accu-
mulate ins the sum of the dropped entries. Later @ris not only added to the diagonal but is also
used during pivot selection in the lower triangular parte fimocedure is outlined in Algorithm 3 and
we call it SMILU-1. This algorithm ensures that the pivot lias largest magnitude after the elements
are dropped from the upper triangular part. However, we @ggoarantee that the pivot still has a
relatively large absolute value after the entries in thediotsiangular are dropped in a future step when
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the supernode is formed. The pivot could become small or esemafter we apply the dropping rule to
L (i.e., after applying (5) in Algorithm 3.) This may cause fhetor U to be ill-conditioned, resulting

in an unstable preconditioner. A slightly modified algamithwhich we call SMILU-2, provides a rem-
edy. Here, we taketo be the absolute value of the dropped s | ¥ groppedtiij|, and the diagonal
ujj is set to bew;; = fij + sign(fij)s. This ensures that the magnitude of the pivot is nondeargasi
after diagonal compensation, thereby avoiding small pivAn alternative method is to accumulate the
one-norm of the dropped vectas:= ¥y oppedUijl- Thus, the pivots would have larger absolute values
compared to what would be in SMILU-2, and we expect the casrdihumber ofU to be smaller; we
call this SMILU-3.

Another twist with MILU is to incorporate diagonal pertutlmms. In the earlier investigations of
MIC (e.g. [24] and the references therein), people foundtti@unperturbed MIC may lead to unpre-
dictable behavior of the largest eigenvalues of the preitionéd matrix. Diferent perturbations were
introduced which could upper bound the eigenvalues foriappooblems, such as Stieltjes matrices.
One of the best is Notay's DRIC [24], a dynamic, relaxed IC. &lepted this scheme in our MILU
variants above. Spelcifically, the diagongl is modified as follows:

1) Chooser = n"d (for discretized PDEg] can be the dimension of the space.)
2) Setej = s/ujj, sis computed as in Step (3) of Algorithm 3
3)
min {20, 1§ if a; > 0
wj = .

max{z(i—‘j“), —1} otherwise

4) Setu;; := fijj + s- wj in Step (4) of Algorithm 3

Intuitively speaking, this ensures that we do not compensad much on the diagonal if the sum
of the dropped entries is large. Note that Notay providedrtstical arguments that the above choice
of wj provides upper spectral bound for certain class of matrimeésno theoretical justifications exist
for general unsymmetric matrices. We observed only ergiyithat it improves convergence in some
cases.

In Table 2, we compare the performance of various ILU alpori and direct solver SuperLU.
We classify the GMRES convergence history in three categotonverge slow (meaning the pre-
set maximum iteration count 500 is exceeded although thiduaisnorm is still decreasing, i.6, <
Irll2/1Ibll2 < 1), anddiverge(meaning||r|l> > ||bll2). The column labeledhemorymeans the code runs
out of memory. The (unmodified) ILUTP  usually works very well, however, when it fails, it is often
due to too many zero pivots. Looking at tel®w and divergecolumns, we see that for a number of
matrices the MILUs could succeed if they are allowed to cariwith more iterations, whereas ILU
would fail completely.

Figure 3 shows performance profiles of various ILUTP algon and SuperLU. Within a certain
time limit, the ILUs can solve many more problems than Supedoes. The ILUs are also advan-
tageous over SuperLU in terms of fill ratio. SuperLU failstwihany problems due to memory ex-
haustion. From the fill-in point of view, various MILUs araxslar, and nearly as good as ILUTH(
SMILU-2 is slightly better than the other two MILU schemes.h&vir is small, such as = 107°,
the diference between theftirent variants of ILUs is very small, mainly because the nemub en-
tries dropped is small. Looking only at the global perforemprofiles, the MILUs are slightly worse
than ILUTP. In general, this is because the MILUs are designereventU from becoming too ill-
conditioned by using diagonal perturbations. On the otteerdh the perturbations can make the
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converge slow diverge memofyzero pivots| avg. iterations

t=10"* ILUTP(7) 142 60 28 2 2216 21
SMILU-1 131 69 30 2 589 27

SMILU-2 137 70 22 3 222 28

SMILU-3 135 73 22 2 219 40

t=10°% ILUTP(7) 133 51 46 2 1737 35
SMILU-1 125 72 33 2 1058 34

SMILU-2 127 71 31 3 296 30

SMILU-3 129 73 28 2 289 33

(r=0.0) SuperLU 222 0 0 10 0 1

Table 2: Comparison of various (M)ILUTP)(algorithms and SuperLU. The column “zero pivots”
indicates the number of zero pivots encountered during ladidrization. The secondary dropping is
turned df.
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Figure 3: Performance profiles of the unmodified ILU and thé Walgorithms withr = 104 or 10°°.
The left column is the profile w.r.t. the fill ratio, and thehtgcolumn is the profile w.r.t. the time ratio.
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andU factors can be far frorfPA(i.e., less accurate [2]), which could result in a poor pretitioner.
Nonetheless, MILU can be useful for some matrices when the [ fails due to too many zero
pivots, as shown in Table 2. Therefore, we still see the méMILU being available as an option even
though we do not recommend it to be used as a default in theraeft

3.6 Threshold partial pivoting

For some matrices with band structure or close to diagomlipinant, sometimes we can trade par-
tial pivoting for a sparser factorization. Therefore, wevptde a relaxed pivoting strategy that gives
preference to the diagonal entries. We use a threshold pteam € [0, 1] to facilitate this. If
[fjjl > n maxs;{Ifij|}, the diagonal entryj; is used as the pivot. Thug,= 1.0 corresponds to partial
pivoting, andy = 0.0 corresponds to diagonal pivoting. Usualjycannot be too small if the numerical
property of the matrix is unknown because the magnitudeegtiiries irL. can grow as much ag?.
In general, even though the pivot growth can be a bit largen thne, the dropped entries are still rela-
tively small. Tables 3 and 4 present the numerical resultsnatarying the pivot tolerancg without
and with secondary dropping, respectively.

When secondary dropping is not used (Table 3), (threshdid}ipg is more reliable than no piv-
oting at all, because general matrices are not close to loggnally dominant.

When secondary dropping is used (Table 4), the situatiootis@ry conclusive, and it is flicult
to choose a goog. This is mainly because the influence of drop tolerance besamsignificant in
the presence of secondary dropping. But we can see clearBvtirage fill ratios are usually less than
one third of those in Table 3, the numbers of problems sufidgssolved are much smaller, and the
iteration counts are much larger.

Based on our experience, it is better not to use secondappithgp when memory is not at a pre-
mium. As a comparison, for complete factorization witk: 0.1, the average fill ratio is 90.7 and the
maximum fill ratio is 1577.2.

Diag thresh ) 1.0 0.1 0.01 0.001 0
7=10"* | Number of successes 199 203 201 201 191
Average fill ratio 173 17.0 153 156 10.0
Maximum fill ratio 371 312 98 100 92
Average iterations 78 11.7 115 154 14.7
7=10"° | Number of successes 209 209 208 205 203
Average fill ratio 345 347 33.0 315 286
Maximum fill ratio 1200 1200 1200 1200 1200
Average iterations 4.1 3.7 3.8 3.3 6.6

Table 3: Hfect of Diagthresh ) with ILUTP(7).

4 Comments on the Software

In this section, we describe a few implementatiofficlilties encountered while developing incomplete
factorization, and summarize the input parameters intreduo the ILU routine.
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Diag-thresh ) 1.0 0.1 0.01 o0.001 0

7 =107 | Number of successes 134 142 142 141 148
Average fill ratio 42 42 4.2 42 4.0
Maximum fill ratio 96 96 9.6 9.6 9.6
Average iterations 15 21 22 23 26

7=10"° | Number of successes 124 133 133 131 132
Average fill ratio 52 54 54 53 54
Maximum fill ratio 96 96 9.6 96 96
Average iterations 29 35 36 31 28

Table 4: Hrect of Diagthresh §) with ILUTP(z, p), using area-based secondary dropping, 10.

4.1 Difficulty with symmetric pruning

Symmetric pruning is a technique to find a smaller graph (sgirimreduction) in place d&(LT) and
that maintains the path-preserving property. Using symimetduction can speed up the depth-first
search traversals (i.e., the symbolic factorization) Whice interleaved with the numerical factorization
steps. Specifically, at stejp the symmetric reduction of the current factdr, 1 : j) is obtained by
removing all nonzero§s for which lisus; # O for somet < min(r, j) [9]. Thatis, inL, the nonzeros
below the first matching nonzero pair in column and rew | of the factorF(1 : j,1 : j) can be
removed. Consider the followingd4 matrix A, the filled matrixF (using the given elimination order),
and the symmetric reductidr

e o o o e o o o e o o o
o o e ®© O o© e ®© O o©
A= , F= , R=
° ° °
° e O O O & o o o

won

In F andR, a symbol %” indicates a fill-in entry. InR, a symbol &” indicates a removed entry
from symmetric pruning, that i$4; is removed due to the matching nonzero pgairandu,. If G(F)
is used in the depth-first traversal, the engyis obtained by the following path:

38154

When using the reduced graf@{R), the above path is replaced by the following one, and thehiaea
bility is maintained:
3818258,
However, in an incomplete factorization, if the magnituddg is smaller than the threshold, it

would be dropped both i and inR. Then the edge 2R, 4 does not exist anymore. The entry
would be missing iRis used for the depth-first search, and similarlylfar The erroneou® is shown
below, where &” indicates a numerical dropping in ILU.

[ ] [ ) [ ) [ ]

[ ]
Rilu:

[SH

[ o [©]

bWe use the convention that an edge is directed from a coluranider of the matrix.
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Options | Default

drop tolerancex 104

RowSiz@ co-norm

secondary dropping area-based adaptiye-
fill-ratio bound ¢) | 10

SMILU No
MC64 ON
equilibration ON
column permutation COLAMD [7]
diag thresh f) 0.1

Table 5: Default values of the parameters of the ILU roui@SITRF.

We thought about several ways to mitigate this problem, saxckelayed pruning or protecting
pruned entries from dropping. But their implementationsul@dncur nontrivial costs in runtime and
memory. We did some tests to evaluate the benefit of pruningcémplete factorization, even if the
pruned graph is very small, i.e. sizeRfess than 5% of that d¥, the total speedup is usually no more
than 20%. For incomplete factorization, since the fill rédioften much smaller (i.eF is already quite
small), we expect the benefit of pruning would be less. Tloeeefwe decided not to use any reduced
graph.

4.2 Zero pivots and relaxed supernodes

In SuperLU’s complete factorization, we use relaxed sup@en to increase the average size of supern-
odes (or block size). We group several columns at the bottotiheocolumn elimination tree into an
artificial supernode [9]. The column elimination tree is tHenination tree (etree) gf\|"|A|, which
shows the columns’ dependencies for any row permutatiortigp@ivoting). That is, the relaxed su-
pernodes at the bottom of the etree will not be modified by aingracolumns outside these supernodes.
Given a postordered etree, this means that the nonzero magise of a colummL(;, j) must be disjoint
from that of a later supernode ( s) > j. Otherwise, there exists a numerical assignment such that a
common rowi can be selected as a pivot at stepnaking supernode (: s) dependent on colump
Therefore, selecting any pivot colunjrhas no impact on supernode:(s).

On the other hand, in an incomplete factorization, if zex@pdccurs in columrj due to dropping,
we cannot choose a random row below the diagonal as pivaulsedt could overlap with a row in the
future relaxed supernodes, which in essence changes deestttcture and dependency. Therefore,
we must choose a pivot row which does not appear in any latered supernode.

4.3 Tunable parameters in the ILU routine

The new ILU routine is namegIGSITRF. It takesoptions structure as the first argument, which con-
tains a set of parameters to control how the ILU decompasitil be performed. The default values of
these parameters are listed in Table 5, which are set bpgalie routine lu_set_default_options().
The users may modify these values based on their problends nee

Based on our experience, we provide the following guidsliregarding how to adjust the parame-
ters if the defaults do not work:
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Equilibration is necessary, and MC64 is usually helpful.

If there are many zero pivots and the preconditioner is tBooihditioned, you could try the
modified variants SMILU-2 or SMILU-3.

If the fill ratio is still small, you may try a smaller.

If you run out of memory, you may try a smallerand a smaller.

5 Comparison with the Other Preconditioners

A number of preconditioning packages using incompleteofagation algorithms were developed for
unsymmetric matrices. In this section, we compare the padace of our new ILU preconditioner
with SPARSKIT [26], ILUPACK [4] and ParaSails [5], which arepresentatives of a wide algorithmic
spectrum. These preconditioners are used in the standaiRIES\terative solver.

The algorithm in SPARSKIT is the original ILUTP algorithmgmosed by Saad, and is the closest
to our algorithm. The primary flierences are: 1) SPARSKIT performs factorization row by rod a
does not use supernode, whereas ours is a column-wisethigoaind exploits supernode; 2) The
secondary dropping in SPARSKIT is row-based anid a fixed constant, whereas ours is area-based
with adaptivep.

ILUPACK uses a very dierent approach to ours and SPARSKIT; it is an inverse-basettiad,
and uses a relatively new multilevel approach to handle Ispiadts. The inverse-based approach
attempts to control the size of the inverse of the precamtliti so that the conditioner number of the
preconditioner is under control. This objective is achéeirdirectly: at stegk of factorization, the
algorithm monitors the norm of theth row of L~1. If that exceeds the prescribed boundmplying
no suitable pivot can be chosen at this step, thenkamd columnk is moved to the end, and the
factorization continues to the next r@elumn. After all the suitable pivots are chosen, the curren
level is considered to be complete, and the factorizatiartss. new level, which is comprised of all
the delayed rows and columns from the previous level.

ParaSails is a parallel implementation of a sparse appaigitimverse preconditioner, which aims
at finding anM with a prescribed sparsity pattern and minimjte- AM||2 [5]. (We only use one
processor in our test.) The use of Frobenius norm permitsugding the minimization problem into
small independent least-squares problems. ParaSailshespatterns of powers of sparsified matrices
as the approximate inverse patterns. The algorithm ingaiw® preprocessing steps: 1) sparsification
of Ato A controlled by parameter 8 thresh< 1.0, and 2) obtain the pattern 8f'¢e'SasM'’s pattern.
Lower values othresh(fewer elements are dropped) and higher valuesi®fels(keep high level of
neighbors) usually result in more accurate but more expernsieconditioners. With the default set-
tings: thresh= 0.1 andnlevels= 1, only 39 matrices converged with the preconditioned GMRE®
construction of the precondition® succeeded with 211 matrices. It took over 63 hours for theesol
to complete with those 211 matrices (either converged oawstion of 500 iterations), in which 62
hours is for preconditioner construction. We tried to daseethe value dhreshand increase the value
of nlevels which helps GMRES to succeed with a few more matrices, lmupthconditioner construc-
tion time becomes prohibitively long. So ParaSails is nehgetitive with the other preconditioners
we are evaluating.

In our comparisons, we use the latest versions of SPARSKdTs{en 2.0) and ILUPACK (ver-
sion 2.3). We usepathf90 -03 -fPIC"to compile SPARSKIT which is in Fortranpathcc -03
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-fPIC" to compile SuperLU and ILUPACK which are in C, and linked wihe AMD Core Math Li-
brary (ACML) for the BLAS routines. In our experiments, wg to keep the similar parameter settings
for all three codes:

e SuperLU 4.0:7 = 10, area-based secondary dropping witke= 5 or 10, diagonal threshold
n=0.1,

e SPARSKIT:7 = 1074, secondary dropping with = y-nnZA)/n(A), wherey = 5 or 10, diagonal
thresholdp = 0.1,

e ILUPACK: 7 =104 v =5,y =5 or 10 (corresp. togaram. elbow” in the code.)

We use the default sparsity reordering options, which afferéint among the three codes due to
different numerical pivoting strategies. our ILU performs ipanpivoting with row swappings and
uses a column reordering method such as Column Approximatardm Degree [7], for which the
underlying graph model is the adjacency graphf|A|. This attempts to minimize an upper bound
on the fillregardless of row interchangesL UPACK does not perform pivoting and uses a symmetric
reordering method such as Approximate Minimum Degree fwhich the underlying graph model
is the adjacency graph OA" + |Al. SPARSKIT performs partial pivoting with row interchangésit
does not perform column exchanges.

Profile of Fill Ratio, y=5 Profile of Fill Ratio, y=10
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Figure 4: Comparison of fill ratio between our supernodal TRJILUPACK and SPARSKIT.

Figure 4(a) shows the fill profiles of the three preconditisneithy = 5 in the secondary dropping.
For smaller allowable fill ratio, ILUPACK could solve a few mgoproblems than our ILU. However,
when the fill ratio is close to the prescribed linpitour code can solve more problems. Both ours and
ILUPACK are better than SPARSKIT. For a largerthe curves of profile are changed, see Figure 4(b).
The left plots are dierent than just cuttingfbaty = 5 in the right figure.

Figure 5 compares the runtime of the GMRES solver using treetpreconditioners. This shows
that our area-based adaptive ILUTRY) is generally superior to the other two preconditionersly@h
the leftmost part of Figure 5(b), when allowing the similar@unt of time, ILUPACK and SPARSKIT
are slightly better.
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Profile of Time Ratio, y=5
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Figure 5: Comparison of runtime of the GMRES solver usingtitinee preconditioners.
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Figure 6 compares the number of iterations of the GMRES saisimg the three preconditioners.
This is very much correlated to the runtime profiles shownigufe 5. Fory = 5, our ILUTP precon-
ditioner and ILUPACK can solve almost the same number of lerab within certain iterations, and
can solve more than SPARSKIT does.

Looking only at the performance profiles in Figures 4-6, mdecand ILUPACK seem to be com-
parable: ours is slightly faster and ILUPACK maintains Istig lower fill. On the other hand, none
of the preconditioners can succeed with all the problemsn ¢kiough they are designed as general-
purpose preconditioners. This idi@girent from direct methods, which almost always succeedras lo
as there is enough memory. Therefore, in addition to perdora profiles, we need to examine precon-
ditioners from diferent perspectives. Among the 232 problems, our code siEedth 142 problems,
and ILUPACK succeeds with 130 problems. Both codes succéddl @0 problems. This shows that
even though the two preconditioners have similar succésstheey succeed with filerent sets of prob-
lems, and so the two methods can be considered complimentange another, and both have practical
values in existence.

6 Conclusions

We adapted the classic dropping strategies of ILUTP in aml@rcorporate supernode structures and
to accommodate dynamic supernodes due to partial pivoingthe secondary dropping strategy, we
proposed an area-based fill control mechanism which is mexiofe and numerically more stable than
the traditional column-based scheme. Furthermore, wejocated several heuristics for adaptively
modifying various threshold parameters as the factoorgtroceeds, which improves the robustness of
the algorithm. The numerical experiments show that our ngrehodal ILU algorithm is competitive
with the inverse-based multilevel ILU method implemented iUPACK. The new ILU routine is
already released to public in SuperLU Version 4.0, which lbardownloaded atttp://crd.1bl.
gov/~xiaoye/SuperLU/.

In the future, we plan to investigatefidirent methods for handling zero pivots to enhance stability
of the factorization, add more adaptivity, and study thepnglitioning d€fect with the other iterative
solvers.
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