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Abstract

We present a new supernode-based incomplete LU factorization method to construct a precon-
ditioner for solving sparse linear systems with iterative methods. The new algorithm is primarily
based on the ILUTP approach by Saad, and we incorporate a number of techniques to improve the
robustness and performance of the traditional ILUTP method. These include new dropping strate-
gies that accommodate the use of supernodal structures in the factored matrix and an area-based
fill control heuristic for the secondary dropping strategy.We present numerical experiments to
demonstrate that our new method is competitive with the other ILU approaches and is well suited
for today’s high performance architectures.

1 Introduction

As problem sizes increase with high fidelity simulations demanding fine details on large, three-dimensional
geometries, iterative methods based on preconditioned Krylov subspace techniques are attractive and
cheaper alternatives to direct methods. A critical component of the iterative solution techniques is the
construction of effective preconditioners. Physics-based preconditioners are quite effective for struc-
tured problems, such as those arising from discretized partial differential equations. On the other hand,
methods based on incomplete LU decomposition are still regarded as generally robust “black-box” pre-
conditioners for unstructured systems arising from a wide range of application areas. A variety of ILU
techniques have been studied extensively in the past, including distinct dropping strategies, such as
the level-of-fill structure-based approach (ILU(k)) [28], numerical threshold-based approach [27], and
more recently, numerical inverse-based multilevel approach [3, 4]. The ILU(k) approach assigns a fill-
level to each element, which characterizes the length of theshortest fill path leading to this fill-in [20].
The elements with level of fill larger thank are dropped. Intuitively, this leads to good approximate
factorization only if the fill-ins become smaller and smaller as the sequence of updates proceeds. Imple-
mentation of ILU(k) can involve a separate symbolic factorization stage to determine all the elements
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to be dropped. The threshold-based approach takes into account the numerical size of the elements
in the factors, and drops those elements that are smaller than a numerical tolerance. A problem with
threshold-based approaches is the difficulty of choosing an appropriate drop tolerance. This method
tends to produce better approximation and is applicable fora wider range of problems, but its imple-
mentation is much more complex because the fill-in pattern must be determined dynamically. One of
the most sophisticated threshold-based methods is ILUTP proposed by Saad [27, 28], which combines
a dual dropping strategy with numerical pivoting (“T” stands for threshold, and “P” stands for pivot-
ing). The dual dropping rule in ILUTP(p, τ) first removes the elements that are smaller thanτ from the
current factored row or column. Among the remaining elements, at mostp largest elements are kept in
order to control the memory growth. Therefore, the dual strategy is somewhat in between the structural
and numerical approaches.

Our method can be considered to be a variant of the ILUTP approach, and we modified our high-
performance direct solver SuperLU [9, 10] to perform incomplete factorization. A key component in
SuperLU is the use of supernodes, which gives several performance advantages over a non-supernodal
(e.g., column-wise) algorithm. Firstly, supernodes enable the use of higher level BLAS kernels which
improves data reuse in the numerical phase. Secondly, symbolic factorization traverses the supernodal
directed graph to determine the nonzero structures ofL andU. Since the supernodal graph can be
much smaller than the nodal (column) graph, the speed of thisphase can be significantly improved.
Lastly, the amount of indirect addressing is reduced while performing the scatter/gather operations for
compressed matrix representation. Although the average size of the supernodes in an incomplete factor
is expected to be smaller than in a complete factor because ofdropping, we have attempted to retain
supernodes as much as possible. We have adapted the droppingrules to incorporate the supernodal
structures as they emerge during factorization. Therefore, our new algorithm has the combined benefits
of retaining numerical robustness of ILUTP as well as achieving fast construction and application of
the ILU preconditioner. In addition, we developed a number of new heuristics to enrich the existing
dropping rules. We show that these new heuristics are helpful in improving the numerical robustness
of the original ILUTP method.

A number of researchers have used blocking techniques to construct incomplete factorization pre-
conditioners. But the extent to which the blocking was applied is rather limited. For example, in device
simulation, Fan et al. used the four-by-four blocks which occurs naturally when each grid point is as-
sociated with four variables after discretization of the coupled PDEs [14]. Chow and Heroux used a
predetermined block partitioning at a coarse level, and exploited fine-grain dense blocks to perform
LU or ILU of the sparse diagonal blocks [6]. Hénon et al. developed a general scheme for identifying
supernodes in ILU(k) [18], but it is not directly applicableto threshold-based dropping. Our algorithm
is most similar to the method proposed by Gupta and George [16], and we extend it to the case of
unsymmetric factorization with partial pivoting, see Section 3.2.

Our contributions can be summarized as follows. We adapt theclassic dropping strategies of ILUTP
in order to incorporate supernode structures and to accommodate dynamic supernodes due to partial
pivoting. For the secondary dropping strategy, we propose an area-based fill control method, which
is more flexible and numerically robust than the traditionalcolumn-based scheme. Furthermore, we
incorporate several heuristics for adaptively modifying various threshold parameters as the factorization
proceeds, which improves the robustness of the algorithm. Finally, the implementation of the algorithm
has already been incorporated in the SuperLU Version 4.0 release, downloadable athttp://crd.lbl.
gov/˜xiaoye/SuperLU/.

The remainder of the paper is organized as follows. In Section 2 we describe the test matrices

2



and the performance metrics that will be used to evaluate thenew algorithm. Section 3 describes in
detail the new supernodal ILU algorithm together with various dropping strategies, and presents the
numerical results. In Section 4 we give some remarks on the implementational and software issues.
Finally in Section 5 we compare our new code with the other codes that use different approximate
factorization algorithms.

2 Notations and Experimental Setup

We useA to denote then × n coefficient matrix of the original linear system,L andU to denote the
incomplete triangular factors. The matrixF = L + U − I represents the filled matrix containing bothL
andU, andM = LU is the preconditioning matrix.D, Dr , Dc represent diagonal matrices,P, Pr , Pc

represent permutation matrices. #S denotes the cardinality of the setS. We use array section notation
in Fortran and MATLAB (s : t) to refer to a range of integers (s, s+ 1, . . . , t). We use nnz(A) to denote
the number of nonzeros in matrixA. Thefill ratio refers to the ratio of the number of nonzeros in the
filled matrixF over that in the original matrixA. Sometimes we need to refer to the fill ratio of a certain
column j, i.e., nnz(F(:, j))/nnz(A(:, j)). The fill ratio is a direct indicator of the memory requirement,
because our code requires very little working storage. The number of operations is also related to the
fill ratio, although it usually grows more linearly.

Our test machine is a Cray XT5 with 664 compute nodes operatedat the National Energy Research
Scientific Computing (NERSC) Center.a. Each node contains two 2.4 GHz AMD Opteron quad-core
processors, with 16 GBytes memory. We use only one core of a node. Each core’s theoretical peak
floating-point performance is 9.6 Gflops/sec. We use PathScalepathcc andpathf90 compilers with
-O3 -fPIC optimization flag.

We have used 232 matrices to evaluate our new ILU strategies.These include 227 matrices from
the University of Florida Sparse Matrix collection [8], and5 matrices from the fusion device simula-
tion [21]. These are all unsymmetric matrices of medium to large size. In particular, the 227 matrices
are all the real unsymmetric matrices in the UF collection which are of dimension 5K–1M and have
condition numbers below 1015. The right-hand side vector is chosen such that the true solution vec-
tor is of all ones. The iterative solver is restarted GMRES with our ILU as a right preconditioner
(i.e. solvingPrAM−1y = Prb). The initial guess is a vector of all zeros. The stopping criterion is
‖rk = b− Axk‖2 ≤ δ ‖b‖2, here we useδ = 10−8 which is in the order of the square root of IEEE dou-
ble precision machine epsilon. We set the dimension of the Krylov subspace to be 50 and maximum
iteration count to be 500. We test ILUTP(τ) with different values ofτ, such as 10−4, 10−6, and 10−8.

We mainly use two performance metrics to assess the algorithms: memory requirement as reflected
by the amount of fill in the preconditioners and the total solution time. To compare different solvers, or
different ILU parameter configurations, we use the performance profiles similar to what was proposed
by E. Dolan and J. Moré in [11] to present the data. The idea ofperformance profile is as follows.
Given a setM of matrices and a setS of solvers, for each matrixm ∈ M and solvers ∈ S, we use
f r(m, s) andt(m, s) to denote the fill ratio and total time needed to solvemby s. If s fails to solvem for
any reason (e.g. out of memory, or exceeding maximum iteration limit), we setf r(m, s) andt(m, s) to
be+∞ (in practice, a very large number that is outside the range ofour interest is sufficient). Then, for
each solvers, we define the following two cumulative distribution functions as the profiles of fill ratio
and time ratio, respectively.

ahttp://www.nersc.gov/nusers/systems/hopper/
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Probf (s, x) =
# {m ∈ M : f r(m, s) ≤ x}

#M , x ∈ R

and

Probt(s, x) =
#
{
m ∈ M : t(m,s)

mins∈S{t(m,s)} ≤ x
}

#M , x ∈ R

Intuitively, Probf (s, x) shows the fraction of the problems thats could solve within the fill ratiox,
andProbt(s, x) shows the fraction of the problems thats could solve within a factor ofx of the best
solution time among all the solvers. Therefore, the plots ofdifferent solvers in thex–Probf or x–Probt

coordinate can be used to differentiate the strength of the solvers in the criteria of fill ratio or time
ratio—the higher the curve, the more problems the corresponding solver could solve under the same
fill or time limit.

We caution that even though the performance profile is a powerful tool to present visually the
overall performance comparison of different solvers, it cannot show the difference of the solvers for
each individual matrix. Therefore, in addition to the performance profiles, we will show other specific
results when there is a need.

3 Incomplete Factorization with Supernodes

3.1 Left-looking supernodal ILUTP

Our base algorithm framework is the left-looking, partial pivoting, supernodal sparse LU factorization
algorithm implemented in SuperLU [9, 10]. The factorization algorithm proceeds from left to right,
using a supernode-panel updating kernel. A panel is simply aset of consecutive columns, which is
used to enhance data reuse in memory hierarchy; it enables use of Level 3 BLAS. The panel size is an
algorithmic blocking parameter. At each step of panel factorization, we obtain a panel in theU factor
and a panel in theL factor.

Several preprocessing steps are used in SuperLU before the factorization kernel, including row/column
equilibration and sparsity-preserving reordering of the columns. In the case of incomplete factoriza-
tion, we found that it is often beneficial to include another preprocessing step to make the initial matrix
more diagonally dominant (e.g., via a maximum weighted bipartite matching algorithm). For this, we
use the HSL subroutine MC64 [12, 19], which is based on the algorithm developed by Olschowska
and Neumaier [25]. The algorithm finds a permutation and the row/column scalings so that the scaled
and permuted matrix has entries of modulus 1 on the diagonal and off-diagonal entries of modulus
bounded by 1. We tested 232 matrices with or without MC64, andfound that using MC64, the ILU-
preconditioned GMRES converge for 203 matrices with average 12 iterations, whereas without MC64,
only 170 matrices converge and the average iteration count is 11.

Our incomplete factorization algorithm retains most of thealgorithmic ingredients from SuperLU,
with the added dropping rules that are applied to theL andU factors on-the-fly [22]. The description of
the algorithm is given as Algorithm 1. The steps marked asbold correspond to the new steps introduced
to perform ILU. Note that the factorization is performed on the matrixPrP0Dr ADcPT

c , whereDr andDc

are diagonal scaling matrices,P0 is the row permutation matrix returned from MC64,Pc is the column
permutation matrix for sparsity preservation, andPr is the row permutation matrix from partial pivoting.
Dr , Dc, P0 andPc are obtained before the factorization, andPr is obtained during factorization.
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Algorithm 1. Left-looking, supernode-panel ILU algorithm

1. Preprocessing

1.1) (optional)Use MC64 to find a row permutationP0 and row and column scaling factors
Dr andDc such that the elements on the diagonal ofP0DrADc has the largest absolute
values.

1.2) If Step 1.1) is not performed, do a simple row & column equilibration to obtainDrADc

in which the element of largest absolute value in each row andcolumn has value 1;

1.3) Compute a fill-reduction column permutationPc;

2. Factorization ofP0Dr ADcPT
c

FOReach panel of columns DO

2.1) Symbolic factorization:determine which supernodes to the left will update the current
panel and a topological order of updates;

2.2) Panel factorization:

FOReach updating supernode DO

Apply triangular solve to obtain theU part;

Apply matrix-matrix multiplication to obtain theL part;

END FOR

2.3) Inner factorization:

FOReach columnj in the panel DO

Update the current columnj;

Apply the dropping rule to the U part;

Find pivot in this column;

(optional) Modify the diagonal entry to handle zero-pivot breakdown;

Determine supernode boundary;

IF column j starts a new supernode THEN

Apply the dropping rule to the newly formed supernodeL(:, s : j − 1),

wheres is the first column of this supernode;

END IF

END FOR

END FOR

Our primary dropping criteria are threshold-based and akinto the ILUTP variants [27, 28]. That is,
while performing Gaussian elimination with partial pivoting, we set to zero the entries inL andU with
modulus smaller than a prescribed relative thresholdτ, whereτ ∈ [0, 1].

Since our compressed storage is column oriented for bothL andU, the dropping rule is also col-
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umn oriented. The upper triangular matrixU is stored in a standard compressed column format, we
can easily remove the small elements while storing the newlycomputed column into the compressed
storage, using the first criterion given in Figure 1.

The lower triangular matrixL is stored as a collection of supernodes. Recall that a supernode
consists of a range (r : s) of columns inL with the triangular block on the diagonal being full, and the
identical nonzero structure elsewhere among the columns. Our goal is to retain the supernodal structure
to the largest extent as in the complete factorization. To this end, we either keep or drop an entire row of
a supernode when it is formed at the current step. This is similar to what was first proposed in [16, 23]
for incomplete Cholesky factorizations. This supernodal dropping criterion is the second rule shown in
Figure 1. Since partial pivoting is used, the magnitude of the elements inL is bounded by 1, and so the
absolute quantity is the same as the relative quantity.

Threshold-based dropping criteria for ILUT(τ)

1) Dropping elements inU: If |ui j | ≤ τ‖A(:, j)‖∞, we setui j to zero.

2) Dropping elements inL: In a supernodeL(:, s : t), if RowS ize(L(i, s : t)) ≤ τ, we
set the entirei-th row to zero, wheres and t are the first and last columns of the
supernode.

Figure 1: The threshold-based dropping criteria, withL-supernode.

Note that we useRowS ize() function to determine whether the size of a row as a whole isconsidered
to be small and can be dropped. There are several possibilities to define this metric. In our code, we

provide three choices: (1)RowS ize(x)
def
= ‖x‖1/m, (2) RowS ize(x)

def
= ‖x‖2/

√
m, and (3)RowS ize(x)

def
=

‖x‖∞, wherem is the number of columns in the supernode (i.e.,m= t− s+1). The first two metrics can
be interpreted as “generalized mean” of the vector elements, whereas the last one is a standard vector
norm. The following relations hold for the three metrics above:

‖x‖1
m
≤ ‖x‖2√

m
≤ ‖x‖∞

In case (1), a row can be dropped when the average magnitude ofthe elements is small, but some
elements much larger thanτ can also be dropped. This is the same criterion used by Gupta and
George [16] in their IC algorithm. Our experiments showed that this metric is much worse than (3)
for ILU probably because many large elements are dropped. Incase (3), the use of∞-norm implies
that when rowi is dropped, the magnitude of every element in this row is smaller thanτ, and hence
these elements would also be dropped in a column-wise algorithm. Therefore, from local viewpoint,
this supernodal dropping rule retains more elements compared to a column-wise algorithm. In other
words, in terms of the amount of dropping, (1) is most aggressive and (3) is most conservative.

Throughout the rest of the paper, the supernodal ILUTP variants are used. In Section 3.3, we
will show the numerical results comparing our supernodal ILU to the column-wise ILU when setting
supernode size to be one.

6



3.2 Adaptive, area-based dropping rules to limit memory use

ILUTP(τ) works well if there is sufficient memory, but it may still suffer from too much fill. We employ
two new ideas to further control the amount of fill. One is dynamically adjusting parameterp in the
dual dropping rule, another is dynamically adjustingτ. We use an area-based fill estimation to adjust
both parameters, which will become clear soon.

Several methods were proposed earlier for the secondary dropping rule using parameterp. In Saad’s
original ILUT(p, τ) approach [27],p is the maximum number of nonzeros (not the level-of-fill) allowed
in each row ofF (in a row-wise algorithm), and is fixed on input. Gupta and George suggested using
p( j) = γ · nnz(A(:, j)) for the j-th column instead of a constant, whereγ is an upper bound of the fill
ratio given by a user [16]. They also proposed a method of computing a secondary dropping tolerance
by an interpolation formula rather than sorting the largestp entries, which is cheaper than the original
ILUT( p, τ). According to our experience, Gupta’s heuristic depends largely on the distribution of the
locations of the nonzeros inF, and the fill ratio can be either very large or very small. The performance
benefit realized by not sorting is also limited. In fact, sorting is not necessary here; a selection algorithm
is more suitable, because we only need to find thep-th largest element. If the number of nonzero entries
in F(:, j) is k, thep-th largest element can be found by quickselect inO(k) time on average, which is the
same as interpolation. Even for a sorting-based selection algorithm, the complexity is merelyO(k logk)
on average using quicksort and is reasonably fast in practice. Our implementation uses quickselect.

We propose a new adaptive strategy for choosingp, which takes into account the overall fill ratioup
to the current step. Given a user-desired upper bound of the overall fill ratio γ, we define a continuous,
upper bound functionf ( j) for each columnj, f : [1, n] → [0,+∞), which satisfiesf (n) ≤ γ. Then at
the j-th column, if the current fill ratio

nnz(F(:, 1 : j))
nnz(A(:, 1 : j))

(1)

exceedsf ( j), we choose a largest possible valuep such that when we keep the largestp elements,
the current fill ratio is bounded byf ( j). This criterion can be adapted to our supernodal algorithm
as follows. For a supernode withk columns andj being the index of the last column of the current
supernode,p may be computed as

p = max

{
f ( j) · nnz(A(:, 1 : j)) − nnz(F(:, 1 : j − k))

k
, k

}
. (2)

In other words, if we keep the largestp rows of this supernode, the current fill ratio is guaranteed not
to exceedf ( j). The secondk term in max{. . .} is to ensure that we do not drop any row in the diagonal
block of the supernode. We call this scheme anarea-basedILUT( p, τ), with adaptivep. This is more
flexible than the column-based method in that it allows larger amount of fill for certain columns as long
as the cumulative fill ratio in the previous columns is small.At the end of factorization, the total fill
ratio is still bounded byγ because of the conditionf (n) ≤ γ.

The above description of the area-based strategy is generic, and may be used in any implementation.
We now introduce a specificf ( j) that is suitable for the SuperLU implementation. SinceL andU are
stored in different data structures, and dropping inL is invoked after a complete supernode is formed,
it is sensible to use different f ( j) for L andU. For a column-based method, at thej-th column, the
simplest way is to splitγ proportionally with j : (n− j) ratio for U(:, j) andL(:, j). For our area-based
approach, we may choose two functions,fL( j) for L and fU( j) for U, as long asfL(n) + fU(n) ≤ γ. A
simple way is to assignfL(n) and fU(n) to be the areas ofL(:, j) andU(:, j) relative toF(:, 1 : j), as
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follows:

fU( j) =
j

2n
γ, fL( j) =

(
1− j

2n

)
γ. (3)

Then we split the fill quota proportionally withfU( j) : fL( j) ratio.
A problem is that dropping inU could be very constraining for smallj. Then, we can simply use

fU( j) = γ/2. With this, even though it could happen thatfL( j)+ fU( j) ≥ γ in the middle of factorization,
fL(n) + fU(n) ≤ γ holds in the end, and the total memory is still bounded. Sincewe do not apply the
dropping rules toward the end in order to reduce the number ofzero pivots (see Section 3.4), we need
to reserve some quota for them by reducingfL( j)+ fU( j). In addition, we need to allow more fill-ins in
L than inU, because the dense diagonal blocks are stored inL, and some small entries inL are located
in the rows with large norm, hence are not dropped. As a result, we propose to use

fU( j) =
γ

2
× 90%, fL( j) =

(
1− j

2n

)
γ. (4)

In conjunction with the dynamic, area-based strategy for choosing p, we devised an adaptive
scheme for choosingτ as well. Specifically, letτ(1) = τ0 be the user-input threshold, at columnj, if the
fill ratio given by Equation (1) is larger thanf ( j), we increaseτ at the next step:τ( j+1) = min{1, 2τ( j)},
forcing more elements to be dropped. Otherwise, we decreaseτ asτ( j+1) = max{τ0, τ( j)/2}, retaining
more entries. Note that we always maintainτ( j) ∈ [τ0, 1]. An advantage of this adaptiveτ is that even
though the initialτ chosen by the user is not good, the code can self-adjust properly as it proceeds.

We now present the results of the tests comparing various parameter settings. When the secondary
dropping is used, we setγ = 10. Our ILU configurations include the following:

1. area-based adaptivep, τ = 10−4;

2. area-based adaptivep, τ = 10−8;

3. area-based adaptiveτ, τ0 = 10−4, no secondary dropping;

4. ILUTP(τ), τ = 10−4;

5. ILUTP(p, τ), p = γ · nnz(A)/n, τ = 10−4;

6. ILUTP(p, τ), p = γ · nnz(A)/n, τ = 10−8;

7. column-based adaptivep ( i.e., p( j) = γ · nnz(A(:, j)) ), τ = 10−4;

8. column-based adaptivep ( i.e., p( j) = γ · nnz(A(:, j)) ), τ = 10−8.

Figure 2 shows the performance profiles of the fill ratio and the time ratio for the 232 test matrices.
We see that a smallτ such as 10−8 is generally not good, because it generates too much fill and takes
long to compute the solution. It is therefore not efficient to rely only on the secondary dropping rule.
The threshold-based dropping criterion in Figure 1 must play a significant role. If we do not use the
secondary dropping, the fraction of the problems solved within a fill constraint is still smaller than after
using our area-based secondary dropping, see the curve corresponding to “ilutp(1e-4)” in Figure 2(a).
Both the non-adaptive and the adaptive column-based secondary dropping heuristics are much worse
than the area-based secondary dropping. This is clearly seen from the bottom four curves in both
Figures 2(a) and 2(b).
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A key conclusion is that our new area-based scheme is much more robust than the column-based
scheme; it is also better than ILUTP(τ) when the fill ratio does not exceed the user-desiredγ (10 in
these cases). ILUTP(τ) becomes better only when the fill ratio is unbounded (i.e., allowing it to exceed
γ). This is consistent with the intuition that an ILU preconditioner tends to be more robust with more
fill-ins.
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Figure 2: Performance profiles after incorporating the secondary dropping rules;γ = 10.

It is possible that the actual fill ratio is larger than the preset parameterγ although this occurs
occasionally. There are two reasons for this to occur. Firstly, our dropping rules do not drop entries in
the dense diagonal blocks. Therefore, when there are some large supernodes inL, these blocks would
contribute to a large memory growth even ifτ is large. Secondly, we never drop any entries in several
trailing columns, and usually there are a lot of fill-ins towards the end of factorization. If the user wants
the memory to be absolutely under a certain limit, we recommend that a slightly smallerγ be used.

Figure 2(b) shows the runtime comparison of the solvers. In this plot, the matrices with fill ratio
larger than 10 are considered as failure. Thus, the comparison is made under the same memory con-
straint, and none of the solvers are allowed to consume significantly more memory than the others. The
top three solvers are much better than the others. The area-based adaptive-p or adaptive-τ schemes
have quite similar performance, with the former having a slight edge over the latter.

Taking into account both memory and time, we see that the secondary dropping helps achieve a
good trade-off, with controlled fill-in and the solver not being much slower. Either the scheme corre-
sponding to the line with “square” (area-based adaptivep, τ = 10−4), or the scheme corresponding to
the line with “right triangle” (adaptiveτ, τ0 = 10−4) can be used as a default setting in the code.

3.3 Comparison of the supernodal and the column-wise algorithms

We performed the experiments to compare the supernodal ILU and the column-wise ILU (by set-

ting maximum supernode size to be one). We use both metrics (2) RowS ize(x)
def
= ‖x‖2/

√
m and (3)

RowS ize(x)
def
= ‖x‖∞ to measure the row size in the dropping rule 1) of Figure 1.
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Table 1 compares various performance metrics of the supernodal (S-ILU) versus column-wise (C-
ILU) ILU. Each number in the table is the average of the corresponding metric taken over the number
of matrices that both versions succeed. As can be seen, usingeither metric in the dropping rule, S-
ILU is faster than C-ILU, although the speed advantage is notgreat compared to that in a complete
factorization. This is mainly due to two reasons: 1) becauseof the row dropping criterion for supernode,
S-ILU has more fill-ins and floating-point operations, and 2)the average supernode size is small after
dropping (less than 3 columns on average). The more fill-ins in the supernodal versions translate into
many more floating-point operations, especially in the conservative case when∞-norm is used, S-ILU
performs over 3.5 times the operations of C-ILU. The larger are the supernodes, the more fill-ins and
operations are incurred in S-ILU. From our experiments we found that we have to set a smaller cutoff for
the maximum supernode size (maxsuper) than in complete factorization. (That is, when a supernode
size exceedsmaxsupercolumns, we will break this supernode into two supernodes.)Otherwise the
extra operations would offset the BLAS-3 benefit. For example, in S-ILUmaxsuper= 20 strikes a
good balance in overall speed, whereas in the complete LU, weoften usemaxsuper= 100.

In these tests, we excluded one matrixcage13, because the C-ILU factorization time is about 1000x
slower than the average, and the inclusion of this matrix would severely skew the statistics of the mean
metric.

Factor construction GMRES Total time
fill-ratio s-node size flops Factor Iters One Trisolve Iter

(columns) (109) time time time

RowS ize(x)
def
=
‖x‖2√

m
; this includes 138 matrices that both versions succeeded

S-ILU 4.2 2.80 7.60 39.69 21.6 0.0092 2.93 42.68
C-ILU 3.7 1 2.65 65.15 20.0 0.0079 2.55 67.75

RowS ize(x)
def
= ‖x‖∞; this includes 134 matrices that both versions succeeded

S-ILU 4.2 2.72 9.45 54.44 20.5 0.0109 3.40 57.90
C-ILU 3.6 1 2.58 74.10 19.8 0.0090 2.88 77.04

Table 1: Comparison of supernodal ILU (S-ILU, withmaxsuper= 20) and column-wise ILU (C-ILU,
with maxsuper= 1) using the “mean” statistics about various metrics. The times are in seconds.
τ = 10−4, γ = 10.

3.4 Handling breakdown due to zero pivots

In the case of LU factorization with partial pivoting, zero pivots may occur due to numerical cancella-
tions when the matrix is nearly singular. However, for an incomplete LU factorization, zero pivots may
occur more often because of dropping, which has nothing to dowith numerical cancellation.

To illustrate this, let us consider the following two 2× 2 matrices:

A1 =

[
a b
c 0

]
, A2 =

[
c 0
a b

]
, (bc, 0).

Assume that the column permutation is the identity. Thus, if|c| < τ |a|, the (2,1) entry will be
dropped, and the (2,2) entry will become zero, causing ILU tobreak down. Assuming thata, b, andc
are drawn independently from the uniform distribution in [−1, 1], we have:
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Prob{u22 = 0} = τ
2
> 0.

In general, let us assume that the nonzero entries of a nonsingular matrix satisfy a uniform distri-
bution in [−1, 1]. Then for a given sparsity pattern, if there exist a row permutationP and a columnj
such that (PA)( j : n, j) = 0 and (PA)(1 : j − 1, 1 : j − 1) is nonsingular, the probability of encoun-
tering a zero pivot in thej-th column would be positive. We can show that (τ/2)nnz(A)−n is a lower
bound of the probability. LetB = PA and suppose thatj is the minimum column index which satisfies
B( j : n, j) = 0. The probability that all the pivots of the firstj − 1 columns are diagonal entries ofB
and all the off-diagonal entries are dropped (with this condition,, definitely there will be a zero pivot in
the j-th column) is

j−1∏

i=1

∏

k>i

Prob{|B(k, i)| < τ|B(i, i)|} =
j−1∏

i=1

(
τ

2

)nnz(B(i+1:n,i))

≥
(
τ

2

)nnz(A(:,1: j−1))−( j−1)
≥
(
τ

2

)nnz(A)−n
.

The last inequality comes from the fact that there is at leastone nonzero element in each column of a
nonsingular matrix.

On the other hand, ifj is the first column index that encounters zero pivot, the matrix must satisfy
the condition that (PA)( j : n, j) = 0 and (PA)(1 : j − 1, 1 : j − 1) is nonsingular.

Usually, many zero pivots occur in the last columns, becauseit is more probable at the end than
in the beginning that all the nonzero entries of a column are permuted to the upper triangular part. To
mitigate this, we stop dropping when the column index is larger than max{n − 2Ns, n × 95%}, where
Ns is the maximum size of a supernode. That is, the factorization is almost finished. According to our
experiment, this helps reduce a large fraction of the zero pivots.

We have devised a simple adaptive mechanism to handle the situation when a zero pivot indeed
occurs. At columnj, when we encounteru j j = 0, we set it to ˆτ ‖A(:, j)‖∞ to ensure the factorization can
continue andU is nonsingular after the factorization. This is equivalentto adding a small perturbation
τ̂ to l i j at the current step. If ˆτ = τ, the perturbation we add tou j j will not exceed the upper bound
of the error propagated by dropping elements. In our code, wechoose ˆτ( j) = 10−2(1− j/n), which is an
increasing function with the column index, rather than a constant. This prevents the diagonal entries of
U from being too small; otherwise, it could result in a very ill-conditioned preconditioner.

Adding a small perturbation on the zero diagonal is a simple remedy to enable the factorization to
complete. This is an acceptable solution when not many zero pivots occur, otherwise, the precon-
ditioner can be quite ill-conditioned even though the factorization completes, making this ineffective.
Some other methods were proposed to handle the breakdown, such as the delayed pivoting [16] and
the multilevel method [3]. We plan to investigate them in thefuture. But our comparison showed that
our current ILU scheme is very competitive with a multilevelILU scheme as in ILUPACK [4], see
Section 5.

3.5 Modified ILU (MILU)

The MILU techniques were introduced to reduce the effect of dropping by compensating for the dis-
carded elements [28]. For systems arising from the discretization of second order elliptic PDEs, it is
generally admitted that the modified incomplete Cholesky (MIC) factorization is more efficient than
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the unmodified one [13, 15, 17, 24, 29]. Whereas for general systems, very little is shown either theo-
retically or empirically whether MILU always helps. Our empirical experience shows that sometimes
it can be better than the unmodified ILU.

The basic idea is to add up the dropped elements in a row or column to the diagonal ofU. The
commonly used strategy has an appealing property that it preserves the row-sum relationPrAe= L̃Ũe
for a row-wise algorithm or column-sum relationeTPr A = eT L̃Ũ for a column-wise algorithm, where
L̃ andŨ are incomplete factors. Algorithm 2 gives the procedure to perform a column-wise MILU with
partial pivoting. Note that for the upper triangular partfi j = ui j , whereas for the lower triangular part
fi j = l i j u j j because of division by the diagonal entryf j j .

We have modified the above column-wise MILU procedure to accommodate our supernodal drop-
ping criteria. Recall that in Algorithm 1, we apply the dropping rule 2) in Figure 1 only after a new
supernode inL is formed. The consequence of this “delayed” dropping is that at the time a column is
processed for pivoting, the computed sumsmay contain fewer dropped entries and the diagonal is not
compensated enough. Therefore, the column-sum relation isnot preserved.

Algorithm 2. Classical column-wise MILU for column j

(1) Obtain the current filled columnF(:, j);
(2) Pivot: Choose pivot rowi, such thati = arg maxi≥ j | fi j |; Swap rowsi and j;
(3) Apply a dropping rule toF(:, j);
(4) Compute the sum of dropped entries inF(:, j): s=

∑
dropped fi j ; Set f j j := f j j + s;

(5) SeparateU andL: U(1 : j, j) := F(1 : j, j); L( j : n, j) := F( j : n, j)/F( j, j);

Algorithm 3. SMILU-1: Supernodal MILU for column j

(1) Obtain the current filled columnF(:, j);
(2) Apply dropping rule 1) of Figure 1 toF(1 : j, j), and setU(1 : j, j) := F(1 : j, j);
(3) Compute the sum of the dropped entries inU(:, j): s=

∑
droppedui j ;

(4) Pivot: Choose pivot rowi, such thati = arg maxi≥ j | f ij + s |;
Swap rowsi and j, and setu j j := fi j + s;

(5) IF j starts a new supernode THEN
Let (r : t) be the newly formed supernode; (t ≡ j − 1)
Apply dropping rule 2) of Figure 1 to the supernodeL(:, r : t);
For each columnk in the supernode (r ≤ k ≤ t):

compute the sum of the dropped entries:Sk =
∑

i droppedl ik;
setukk := ukk + Sk · ukk;

END IF;

Our supernodal version of the MILU strategy works as follows. For each column ofU, we accu-
mulate ins the sum of the dropped entries. Later on,s is not only added to the diagonal but is also
used during pivot selection in the lower triangular part. The procedure is outlined in Algorithm 3 and
we call it SMILU-1. This algorithm ensures that the pivot hasthe largest magnitude after the elements
are dropped from the upper triangular part. However, we cannot guarantee that the pivot still has a
relatively large absolute value after the entries in the lower triangular are dropped in a future step when
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the supernode is formed. The pivot could become small or evenzero after we apply the dropping rule to
L (i.e., after applying (5) in Algorithm 3.) This may cause thefactorU to be ill-conditioned, resulting
in an unstable preconditioner. A slightly modified algorithm, which we call SMILU-2, provides a rem-
edy. Here, we takes to be the absolute value of the dropped sum:s = |∑droppedui j |, and the diagonal
u j j is set to be:u j j := fi j + sign(fi j )s. This ensures that the magnitude of the pivot is nondecreasing
after diagonal compensation, thereby avoiding small pivots. An alternative method is to accumulate the
one-norm of the dropped vector:s =

∑
dropped|ui j |. Thus, the pivots would have larger absolute values

compared to what would be in SMILU-2, and we expect the condition number ofU to be smaller; we
call this SMILU-3.

Another twist with MILU is to incorporate diagonal perturbations. In the earlier investigations of
MIC (e.g. [24] and the references therein), people found that the unperturbed MIC may lead to unpre-
dictable behavior of the largest eigenvalues of the preconditioned matrix. Different perturbations were
introduced which could upper bound the eigenvalues for special problems, such as Stieltjes matrices.
One of the best is Notay’s DRIC [24], a dynamic, relaxed IC. Weadopted this scheme in our MILU
variants above. Specifically, the diagonalu j j is modified as follows:

1) Chooseα = n−
1
d (for discretized PDEs,d can be the dimension of the space.)

2) Setα j = s/u j j , s is computed as in Step (3) of Algorithm 3

3)

ω j =



min
{

2(1−α)
α j
, 1
}

if α j > 0

max
{

2(1−α)
α j
,−1
}

otherwise

4) Setu j j := fi j + s · ω j in Step (4) of Algorithm 3

Intuitively speaking, this ensures that we do not compensate too much on the diagonal if the sum
of the dropped entries is large. Note that Notay provided theoretical arguments that the above choice
of ω j provides upper spectral bound for certain class of matrices, but no theoretical justifications exist
for general unsymmetric matrices. We observed only empirically that it improves convergence in some
cases.

In Table 2, we compare the performance of various ILU algorithms and direct solver SuperLU.
We classify the GMRES convergence history in three categories: converge, slow (meaning the pre-
set maximum iteration count 500 is exceeded although the residual norm is still decreasing, i.e,δ <
‖r‖2/‖b‖2 < 1), anddiverge(meaning‖r‖2 ≥ ‖b‖2). The column labeledmemorymeans the code runs
out of memory. The (unmodified) ILUTP(τ) usually works very well, however, when it fails, it is often
due to too many zero pivots. Looking at theslow anddivergecolumns, we see that for a number of
matrices the MILUs could succeed if they are allowed to continue with more iterations, whereas ILU
would fail completely.

Figure 3 shows performance profiles of various ILUTP algorithms and SuperLU. Within a certain
time limit, the ILUs can solve many more problems than SuperLU does. The ILUs are also advan-
tageous over SuperLU in terms of fill ratio. SuperLU fails with many problems due to memory ex-
haustion. From the fill-in point of view, various MILUs are similar, and nearly as good as ILUTP(τ).
SMILU-2 is slightly better than the other two MILU schemes. Whenτ is small, such asτ = 10−6,
the difference between the different variants of ILUs is very small, mainly because the number of en-
tries dropped is small. Looking only at the global performance profiles, the MILUs are slightly worse
than ILUTP. In general, this is because the MILUs are designed to preventU from becoming too ill-
conditioned by using diagonal perturbations. On the other hand, the perturbations can make theL
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converge slow diverge memoryzero pivots avg. iterations
τ = 10−4 ILUTP(τ) 142 60 28 2 2216 21

SMILU-1 131 69 30 2 589 27
SMILU-2 137 70 22 3 222 28
SMILU-3 135 73 22 2 219 40

τ = 10−6 ILUTP(τ) 133 51 46 2 1737 35
SMILU-1 125 72 33 2 1058 34
SMILU-2 127 71 31 3 296 30
SMILU-3 129 73 28 2 289 33

(τ = 0.0) SuperLU 222 0 0 10 0 1

Table 2: Comparison of various (M)ILUTP(τ) algorithms and SuperLU. The column “zero pivots”
indicates the number of zero pivots encountered during ILU factorization. The secondary dropping is
turned off.
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Figure 3: Performance profiles of the unmodified ILU and the MILU algorithms withτ = 10−4 or 10−6.
The left column is the profile w.r.t. the fill ratio, and the right column is the profile w.r.t. the time ratio.
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andU factors can be far fromPA (i.e., less accurate [2]), which could result in a poor preconditioner.
Nonetheless, MILU can be useful for some matrices when the pure ILU fails due to too many zero
pivots, as shown in Table 2. Therefore, we still see the meritof MILU being available as an option even
though we do not recommend it to be used as a default in the software.

3.6 Threshold partial pivoting

For some matrices with band structure or close to diagonallydominant, sometimes we can trade par-
tial pivoting for a sparser factorization. Therefore, we provide a relaxed pivoting strategy that gives
preference to the diagonal entries. We use a threshold parameter η ∈ [0, 1] to facilitate this. If
| f j j | ≥ η maxi≥ j{| fi j |}, the diagonal entryf j j is used as the pivot. Thus,η = 1.0 corresponds to partial
pivoting, andη = 0.0 corresponds to diagonal pivoting. Usually,η cannot be too small if the numerical
property of the matrix is unknown because the magnitude of the entries inL can grow as much asη−1.
In general, even though the pivot growth can be a bit larger than one, the dropped entries are still rela-
tively small. Tables 3 and 4 present the numerical results when varying the pivot toleranceη, without
and with secondary dropping, respectively.

When secondary dropping is not used (Table 3), (threshold) pivoting is more reliable than no piv-
oting at all, because general matrices are not close to beingdiagonally dominant.

When secondary dropping is used (Table 4), the situation is not very conclusive, and it is difficult
to choose a goodη. This is mainly because the influence of drop tolerance becomes insignificant in
the presence of secondary dropping. But we can see clearly the average fill ratios are usually less than
one third of those in Table 3, the numbers of problems successfully solved are much smaller, and the
iteration counts are much larger.

Based on our experience, it is better not to use secondary dropping when memory is not at a pre-
mium. As a comparison, for complete factorization withη = 0.1, the average fill ratio is 90.7 and the
maximum fill ratio is 1577.2.

Diag thresh (η) 1.0 0.1 0.01 0.001 0
τ = 10−4 Number of successes 199 203 201 201 191

Average fill ratio 17.3 17.0 15.3 15.6 10.0
Maximum fill ratio 371 312 98 100 92
Average iterations 7.8 11.7 11.5 15.4 14.7

τ = 10−6 Number of successes 209 209 208 205 203
Average fill ratio 34.5 34.7 33.0 31.5 28.6
Maximum fill ratio 1200 1200 1200 1200 1200
Average iterations 4.1 3.7 3.8 3.3 6.6

Table 3: Effect of Diagthresh (η) with ILUTP(τ).

4 Comments on the Software

In this section, we describe a few implementation difficulties encountered while developing incomplete
factorization, and summarize the input parameters introduced to the ILU routine.
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Diag thresh (η) 1.0 0.1 0.01 0.001 0
τ = 10−4 Number of successes 134 142 142 141 148

Average fill ratio 4.2 4.2 4.2 4.2 4.0
Maximum fill ratio 9.6 9.6 9.6 9.6 9.6
Average iterations 15 21 22 23 26

τ = 10−6 Number of successes 124 133 133 131 132
Average fill ratio 5.2 5.4 5.4 5.3 5.4
Maximum fill ratio 9.6 9.6 9.6 9.6 9.6
Average iterations 29 35 36 31 28

Table 4: Effect of Diagthresh (η) with ILUTP(τ, p), using area-based secondary dropping,γ = 10.

4.1 Difficulty with symmetric pruning

Symmetric pruning is a technique to find a smaller graph (symmetric reduction) in place ofG(LT) and
that maintains the path-preserving property. Using symmetric reduction can speed up the depth-first
search traversals (i.e., the symbolic factorization) which are interleaved with the numerical factorization
steps. Specifically, at stepj, the symmetric reduction of the current factorL(:, 1 : j) is obtained by
removing all nonzeroslrs for which ltsust , 0 for somet < min(r, j) [9]. That is, inL, the nonzeros
below the first matching nonzero pair in column and rows < j of the factorF(1 : j, 1 : j) can be
removed. Consider the following 4×4 matrixA, the filled matrixF (using the given elimination order),
and the symmetric reductionR:

A =



• • • •
• •

•
•


, F =



• • • •
• • ◦ ◦

•
• ◦ ◦ ◦


, R=



• • • •
• • ◦ ◦

•
⊖ ◦ ◦ ◦


.

In F andR, a symbol “◦” indicates a fill-in entry. InR, a symbol “⊖” indicates a removed entry
from symmetric pruning, that is,l41 is removed due to the matching nonzero pairl21 andu12. If G(F)
is used in the depth-first traversal, the entryl43 is obtained by the following path:b

3
A−→ 1

F−→ 4

When using the reduced graphG(R), the above path is replaced by the following one, and the reacha-
bility is maintained:

3
A−→ 1

R−→ 2
R−→ 4

However, in an incomplete factorization, if the magnitude of l42 is smaller than the threshold, it

would be dropped both inF and inR. Then the edge 2
R−→ 4 does not exist anymore. The entryl43

would be missing ifR is used for the depth-first search, and similarly forl44. The erroneousR is shown
below, where “⊗” indicates a numerical dropping in ILU.

Rilu =



• • • •
• • ◦ ◦

•
⊖ ⊗


.

bWe use the convention that an edge is directed from a column toa row of the matrix.
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Options Default

drop tolerance (τ) 10−4

RowS ize() ∞-norm
secondary dropping area-based adaptive-p
fill-ratio bound (γ) 10
SMILU No
MC64 ON
equilibration ON
column permutation COLAMD [7]
diag thresh (η) 0.1

Table 5: Default values of the parameters of the ILU routinexGSITRF.

We thought about several ways to mitigate this problem, suchas delayed pruning or protecting
pruned entries from dropping. But their implementations would incur nontrivial costs in runtime and
memory. We did some tests to evaluate the benefit of pruning. For complete factorization, even if the
pruned graph is very small, i.e. size ofR less than 5% of that ofF, the total speedup is usually no more
than 20%. For incomplete factorization, since the fill ratiois often much smaller (i.e.,F is already quite
small), we expect the benefit of pruning would be less. Therefore, we decided not to use any reduced
graph.

4.2 Zero pivots and relaxed supernodes

In SuperLU’s complete factorization, we use relaxed supernodes to increase the average size of supern-
odes (or block size). We group several columns at the bottom of the column elimination tree into an
artificial supernode [9]. The column elimination tree is theelimination tree (etree) of|A|T |A|, which
shows the columns’ dependencies for any row permutation (partial pivoting). That is, the relaxed su-
pernodes at the bottom of the etree will not be modified by any other columns outside these supernodes.
Given a postordered etree, this means that the nonzero row structure of a columnL(:, j) must be disjoint
from that of a later supernode (r : s) > j. Otherwise, there exists a numerical assignment such that a
common rowi can be selected as a pivot at stepj, making supernode (r : s) dependent on columnj.
Therefore, selecting any pivot columnj has no impact on supernode (r : s).

On the other hand, in an incomplete factorization, if zero pivot occurs in columnj due to dropping,
we cannot choose a random row below the diagonal as pivot, because it could overlap with a row in the
future relaxed supernodes, which in essence changes the etree structure and dependency. Therefore,
we must choose a pivot row which does not appear in any later relaxed supernode.

4.3 Tunable parameters in the ILU routine

The new ILU routine is namedxGSITRF. It takesoptions structure as the first argument, which con-
tains a set of parameters to control how the ILU decomposition will be performed. The default values of
these parameters are listed in Table 5, which are set by calling the routineilu set default options().
The users may modify these values based on their problems need.

Based on our experience, we provide the following guidelines regarding how to adjust the parame-
ters if the defaults do not work:
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• Equilibration is necessary, and MC64 is usually helpful.

• If there are many zero pivots and the preconditioner is too ill-conditioned, you could try the
modified variants SMILU-2 or SMILU-3.

• If the fill ratio is still small, you may try a smallerτ.

• If you run out of memory, you may try a smallerγ and a smallerη.

5 Comparison with the Other Preconditioners

A number of preconditioning packages using incomplete factorization algorithms were developed for
unsymmetric matrices. In this section, we compare the performance of our new ILU preconditioner
with SPARSKIT [26], ILUPACK [4] and ParaSails [5], which arerepresentatives of a wide algorithmic
spectrum. These preconditioners are used in the standard GMRES iterative solver.

The algorithm in SPARSKIT is the original ILUTP algorithm proposed by Saad, and is the closest
to our algorithm. The primary differences are: 1) SPARSKIT performs factorization row by row and
does not use supernode, whereas ours is a column-wise algorithm and exploits supernode; 2) The
secondary dropping in SPARSKIT is row-based andp is a fixed constant, whereas ours is area-based
with adaptivep.

ILUPACK uses a very different approach to ours and SPARSKIT; it is an inverse-based method,
and uses a relatively new multilevel approach to handle small pivots. The inverse-based approach
attempts to control the size of the inverse of the preconditioner so that the conditioner number of the
preconditioner is under control. This objective is achieved indirectly: at stepk of factorization, the
algorithm monitors the norm of thek-th row of L−1. If that exceeds the prescribed boundν, implying
no suitable pivot can be chosen at this step, then rowk and columnk is moved to the end, and the
factorization continues to the next row/column. After all the suitable pivots are chosen, the current
level is considered to be complete, and the factorization starts a new level, which is comprised of all
the delayed rows and columns from the previous level.

ParaSails is a parallel implementation of a sparse approximate inverse preconditioner, which aims
at finding anM with a prescribed sparsity pattern and minimize‖I − AM‖2F [5]. (We only use one
processor in our test.) The use of Frobenius norm permits decoupling the minimization problem inton
small independent least-squares problems. ParaSails usesthe patterns of powers of sparsified matrices
as the approximate inverse patterns. The algorithm involves two preprocessing steps: 1) sparsification
of A to Ã controlled by parameter 0≤ thresh≤ 1.0, and 2) obtain the pattern of̃AnlevelsasM’s pattern.
Lower values ofthresh(fewer elements are dropped) and higher values ofnlevels(keep high level of
neighbors) usually result in more accurate but more expensive preconditioners. With the default set-
tings: thresh= 0.1 andnlevels= 1, only 39 matrices converged with the preconditioned GMRES. The
construction of the preconditionerM succeeded with 211 matrices. It took over 63 hours for the solver
to complete with those 211 matrices (either converged or exhaustion of 500 iterations), in which 62
hours is for preconditioner construction. We tried to decrease the value ofthreshand increase the value
of nlevels, which helps GMRES to succeed with a few more matrices, but the preconditioner construc-
tion time becomes prohibitively long. So ParaSails is not competitive with the other preconditioners
we are evaluating.

In our comparisons, we use the latest versions of SPARSKIT (version 2.0) and ILUPACK (ver-
sion 2.3). We use “pathf90 -O3 -fPIC” to compile SPARSKIT which is in Fortran, “pathcc -O3

18



-fPIC” to compile SuperLU and ILUPACK which are in C, and linked with the AMD Core Math Li-
brary (ACML) for the BLAS routines. In our experiments, we try to keep the similar parameter settings
for all three codes:

• SuperLU 4.0:τ = 10−4, area-based secondary dropping withγ = 5 or 10, diagonal threshold
η = 0.1;

• SPARSKIT:τ = 10−4, secondary dropping withp = γ ·nnz(A)/n(A), whereγ = 5 or 10, diagonal
thresholdη = 0.1;

• ILUPACK: τ = 10−4, ν = 5, γ = 5 or 10 (corresp. to “param.elbow” in the code.)

We use the default sparsity reordering options, which are different among the three codes due to
different numerical pivoting strategies. our ILU performs partial pivoting with row swappings and
uses a column reordering method such as Column Approximate Minimum Degree [7], for which the
underlying graph model is the adjacency graph of|A|T |A|. This attempts to minimize an upper bound
on the fill regardless of row interchanges. ILUPACK does not perform pivoting and uses a symmetric
reordering method such as Approximate Minimum Degree [1], for which the underlying graph model
is the adjacency graph of|A|T + |A|. SPARSKIT performs partial pivoting with row interchanges, but
does not perform column exchanges.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x : performance ratio

P
ro

b(
F

ill
 R

at
io

 ≤
 x

)

Profile of Fill Ratio, γ=5

 

 
SuperLU 4.0
ILUPACK 2.3
SPARSKIT 2

(a) γ = 5

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x : performance ratio

P
ro

b(
F

ill
 R

at
io

 ≤
 x

)

Profile of Fill Ratio, γ=10

 

 
SuperLU 4.0
ILUPACK 2.3
SPARSKIT 2

(b) γ = 10

Figure 4: Comparison of fill ratio between our supernodal ILUTP, ILUPACK and SPARSKIT.

Figure 4(a) shows the fill profiles of the three preconditioners withγ = 5 in the secondary dropping.
For smaller allowable fill ratio, ILUPACK could solve a few more problems than our ILU. However,
when the fill ratio is close to the prescribed limitγ, our code can solve more problems. Both ours and
ILUPACK are better than SPARSKIT. For a largerγ, the curves of profile are changed, see Figure 4(b).
The left plots are different than just cutting off atγ = 5 in the right figure.

Figure 5 compares the runtime of the GMRES solver using the three preconditioners. This shows
that our area-based adaptive ILUTP(τ, p) is generally superior to the other two preconditioners. Only at
the leftmost part of Figure 5(b), when allowing the similar amount of time, ILUPACK and SPARSKIT
are slightly better.
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Figure 5: Comparison of runtime of the GMRES solver using thethree preconditioners.
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Figure 6: Comparison of iteration count of the GMRES solver using the three preconditioners.
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Figure 6 compares the number of iterations of the GMRES solver using the three preconditioners.
This is very much correlated to the runtime profiles shown in Figure 5. Forγ = 5, our ILUTP precon-
ditioner and ILUPACK can solve almost the same number of problems within certain iterations, and
can solve more than SPARSKIT does.

Looking only at the performance profiles in Figures 4–6, our code and ILUPACK seem to be com-
parable: ours is slightly faster and ILUPACK maintains slightly lower fill. On the other hand, none
of the preconditioners can succeed with all the problems, even though they are designed as general-
purpose preconditioners. This is different from direct methods, which almost always succeed as long
as there is enough memory. Therefore, in addition to performance profiles, we need to examine precon-
ditioners from different perspectives. Among the 232 problems, our code succeeds with 142 problems,
and ILUPACK succeeds with 130 problems. Both codes succeed with 100 problems. This shows that
even though the two preconditioners have similar success rate, they succeed with different sets of prob-
lems, and so the two methods can be considered complimentaryto one another, and both have practical
values in existence.

6 Conclusions

We adapted the classic dropping strategies of ILUTP in orderto incorporate supernode structures and
to accommodate dynamic supernodes due to partial pivoting.For the secondary dropping strategy, we
proposed an area-based fill control mechanism which is more flexible and numerically more stable than
the traditional column-based scheme. Furthermore, we incorporated several heuristics for adaptively
modifying various threshold parameters as the factorization proceeds, which improves the robustness of
the algorithm. The numerical experiments show that our new supernodal ILU algorithm is competitive
with the inverse-based multilevel ILU method implemented in ILUPACK. The new ILU routine is
already released to public in SuperLU Version 4.0, which canbe downloaded athttp://crd.lbl.
gov/˜xiaoye/SuperLU/.

In the future, we plan to investigate different methods for handling zero pivots to enhance stability
of the factorization, add more adaptivity, and study the preconditioning effect with the other iterative
solvers.
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