SIAM J. MATRIX ANAL. APPL. © 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 720-755

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING*

JAMES W. DEMMEL', STANLEY C. EISENSTAT%, JOHN R. GILBERT!, XIAOYE S. LIY,
AND JOSEPH W. H. LIU/

Abstract. We investigate several ways to improve the performance of sparse LU factorization
with partial pivoting, as used to solve unsymmetric linear systems. We introduce the notion of
unsymmetric supernodes to perform most of the numerical computation in dense matrix kernels. We
introduce unsymmetric supernode-panel updates and two-dimensional data partitioning to better
exploit the memory hierarchy. We use Gilbert and Peierls’s depth-first search with Eisenstat and
Liu’s symmetric structural reductions to speed up symbolic factorization.

We have developed a sparse LU code using all these ideas. We present experiments demonstrating
that it is significantly faster than earlier partial pivoting codes. We also compare its performance with
UMFPACK, which uses a multifrontal approach; our code is very competitive in time and storage
requirements, especially for large problems.

Key words. sparse matrix algorithms, unsymmetric linear systems, supernodes, column elimi-
nation tree, partial pivoting

AMS subject classifications. 65F05, 65F50

PII. S0895479895291765

1. Introduction. The problem of solving sparse symmetric positive definite sys-
tems of linear equations on sequential and vector processors is fairly well understood.
Normally, the solution process is performed in two phases:

e symbolic determination of the nonzero structure of the Cholesky factor;
e numeric factorization and solution.

Elimination trees [35] and compressed subscripts [41] reduce the time and space
for symbolic factorization. Supernodal [5] and multifrontal [15] elimination allow the
use of dense vector operations for nearly all of the floating-point computation, thus
reducing the symbolic overhead in numeric factorization. Overall, the Megaflop rates
of modern sparse Cholesky codes are nearly comparable to those of dense solvers [37,
38, 39].

*Received by the editors September 11, 1995; accepted for publication (in revised form) by A.

Greenbaum May 15, 1998; published electronically April 14, 1999.
http://www.siam.org/journals/simax/20-3/29176.html

fComputer Science Division, University of California, Berkeley, CA 94720 (demmel@cs.berkeley.
edu). The research of the first and fourth authors was supported in part by NSF grant ASC-9313958,
DOE grant DE-FG03-94ER25219, UT Subcontract ORA4466 from ARPA Contract DAAL03-91—
C0047, DOE grant DE-FG03-94ER25206, and NSF Infrastructure grants CDA-8722788 and CDA—
9401156.

fDepartment of Computer Science, Yale University, P.O. Box 208285, New Haven, CT 06520-8285
(sce@cs.yale.edu). The research of this author was supported in part by NSF grant CCR-9400921.

§Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304 (gilbert@
xerox.com). The research of this author was supported in part by the Institute for Mathematics
and Its Applications, University of Minnesota, and in part by DARPA Contract DABT63-95-C0087.

9National Energy Research Scientific Computing (NERSC) Center, Lawrence Berkeley National
Lab, 1 Cyclotron Rd., Berkeley, CA 94720 (xiaoye@nersc.gov). The research of this author was done
at UC Berkeley and as a summer intern and consultant at Xerox PARC.

I Department of Computer Science, York University, North York, ON, M3J 1P3, Canada,
(joseph@cs.yorku.ca). The research of this author was supported in part by the Natural Sciences
and Engineering Research Council of Canada under grant A5509.

720

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 721

for column j =1 ton do
= A(:uj);
Symbolic factor: determine which columns of L will update f;
for each updating column r < j in topological order do

Col-col update: f = f— f(r)- L(r + Llin,r);

end for;
Pivot: interchange f(j) and f(m), where |f(m)| = max|f(j:n)|;
Separate L and U: U(1:5,5) = f(1:5); L(jmn,j) = f(j:n);
Seale: L(:,j) = L(:,)/ L(. j);
Prune symbolic structure based on column j;

end for;

Fiac. 1.1. Left-looking LU factorization with column-column updates.

For unsymmetric systems, where pivoting is required to maintain numerical sta-
bility, progress has been less satisfactory. Recent research has concentrated on two
basic approaches: submatrix-based methods and column-based (or row-based) meth-
ods. Submatrix methods typically use some form of Markowitz ordering with threshold
pivoting, in which each stage’s pivot element is chosen from the uneliminated subma-
trix by criteria that attempt to balance numerical quality and preservation of sparsity.
Recent submatrix codes include Amestoy and Duff’s symmetric pattern multifrontal
code MUPS [2] and Davis and Duff’s unsymmetric multifrontal code UMFPACK [7].

Column methods, by contrast, typically use ordinary partial pivoting.! The pivot
is chosen from the current column according to numerical considerations alone; the
columns may be preordered before factorization to preserve sparsity. Figure 1.1 sketches
a generic left-looking column LU factorization.? Notice that the bulk of the numeric
computation occurs in column-column (col-col) updates, or, to use BLAS terminol-
ogy [13, 14], in sparse AXPYs.

In column methods, the preordering for sparsity is completely separate from the
factorization, just as in the symmetric case. This is an advantage when several matri-
ces with the same nonzero structure but different numerical values must be factored.
However, symbolic factorization cannot be separated from numeric factorization, be-
cause the nonzero structures of the factors depend on the numerical pivoting choices.
Thus column codes must do some symbolic factorization at each stage; typically this
amounts to predicting the structure of each column of the factors immediately before
computing it. (George and Ng [22, 23] described ways to obtain upper bounds on
the structure of the factors based only on the nonzero structure of the original ma-
trix.) A disadvantage of the column methods is that they do not reorder the columns
dynamically, so there may be more fill.

An early example of such a code is Sherman’s NSPIV [42] (which is actually a row
code). Gilbert and Peierls [29] showed how to use depth-first search and topological
ordering to get the structure of each factor column. This gives a column code that
runs in total time proportional to the number of nonzero floating-point operations,
unlike the other partial pivoting codes. Eisenstat and Liu [21] designed a pruning

IRow methods are exactly analogous to column methods, and codes of both sorts exist. We will
use column terminology; those who prefer rows may interchange the terms throughout the paper.

2We use Matlab notation for integer ranges and submatrices: r:s or (r:s) is the range of integers
(r,r+1,...,s). If I and J are sets of integers, then A(I,J) is the submatrix of A with rows whose
indices are from I and with columns whose indices are from J. A(:, J) abbreviates A(1 : n, J). nnz(A)
denotes the number of nonzeros in A.

722 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

technique to reduce the amount of structural information required for the symbolic
factorization, as we describe further in section 4. The result is that the time and
space for symbolic factorization are typically reduced to a small fraction of the entire
factorization.

In view of the success of supernodal techniques for symmetric matrices, it is
natural to consider the use of supernodes to enhance the performance of unsymmetric
solvers. Like the nonzero structure of the factors, the boundaries of the supernodes
cannot be determined in advance; rather, they emerge depending on pivoting choices
during the factorization.

In this paper, we generalize supernodes to unsymmetric matrices, and we give
efficient algorithms for locating and using unsymmetric supernodes during a column-
based LU factorization. We describe a new code called SuperLLU that uses depth-first
search and symmetric pruning to speed up symbolic factorization, and uses unsymmet-
ric supernodes to speed up numeric factorization. The rest of the paper is organized
as follows. Section 2 introduces the tools we use: unsymmetric supernodes, panels,
and the column elimination tree. Section 3 describes the supernodal numeric factor-
ization. Section 4 describes the supernodal symbolic factorization. In section 5, we
present experimental results: we benchmark our code on several test matrices, we
compare its performance to other column and submatrix codes, and we investigate
its cache behavior in some detail. Finally, section 6 presents conclusions and open
questions.

2. Unsymmetric supernodes. The idea of a supernode is to group together
columns with the same nonzero structure, so they can be treated as a dense matrix
for storage and computation. Supernodes were originally used for (symmetric) sparse
Cholesky factorization [5, 15]. In the factorization A = LLT (or A = LDL™), a
supernode is a range (r:s) of columns of L with the same nonzero structure below
the diagonal; that is, L(r:s,r:s) is full lower triangular and every row of L(s:n,r:s) is
either full or zero.

Rothberg and Gupta [38, 39] and Ng and Peyton [37] analyzed the effect of super-
nodes in Cholesky factorization on modern uniprocessor machines with memory hi-
erarchies and vector or superscalar hardware. All the updates from columns of a
supernode are summed into a dense vector before the sparse update is performed.
This reduces indirect addressing and allows the inner loops to be unrolled. In effect, a
sequence of col-col updates is replaced by a supernode-column (sup-col) update. The
sup-col update can be implemented using a call to a standard dense Level 2 BLAS
matrix-vector multiplication kernel. This idea can be further extended to supernode-
supernode (sup-sup) updates, which can be implemented using a Level 3 BLAS dense
matrix-matrix kernel. This can reduce memory traffic by an order of magnitude, be-
cause a supernode in the cache can participate in multiple column updates. Ng and
Peyton reported that a sparse Cholesky algorithm based on sup-sup updates typically
runs 2.5 to 4.5 times as fast as a col-col algorithm. Indeed, supernodes have become
a standard tool in sparse Cholesky factorization [5, 37, 38, 43].

To sum up, supernodes as the source of updates help because of the following:

1. The inner loop (over rows) has no indirect addressing. (Sparse Level 1 BLAS
is replaced by dense Level 1 BLAS.)

2. The outer loop (over columns in the supernode) can be unrolled to save
memory references. (Level 1 BLAS is replaced by Level 2 BLAS.)

Supernodes as the destination of updates help because of the following:

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 723

3. Elements of the source supernode can be reused in multiple columns of the
destination supernode to reduce cache misses. (Level 2 BLAS is replaced by
Level 3 BLAS.)

Supernodes in sparse Cholesky can be determined during symbolic factorization,
before the numeric factorization begins. However, in sparse LU, the nonzero structure
cannot be predicted before numeric factorization, so we must identify supernodes on
the fly. Furthermore, since the factors L and U are no longer transposes of each other,
we must generalize the definition of a supernode.

2.1. Definition of unsymmetric supernodes. We considered several possible
ways to generalize the symmetric definition of supernodes to unsymmetric factoriza-
tion. We define F' = L 4+ U — I to be the filled matriz containing both L and U.

T1. Same row and column structures: A supernode is a range (r:s) of columns
of L and rows of U, such that the diagonal block F'(r:s,r:s) is full, and outside
that block all the columns of L in the range have the same structure and all
the rows of U in the range have the same structure. T1 supernodes make it
possible to do sup-sup updates, realizing all three benefits.

T2. Same column structure in L: A supernode is a range (r:s) of columns of L
with triangular diagonal block full and the same structure below the diagonal
block. T2 supernodes allow sup-col updates, realizing the first two benefits.

T3. Same column structure in L, full diagonal block in U: A supernode is a
range (r:s) of columns of L and U, such that the diagonal block F(r:s,r:s) is
full, and below the diagonal block the columns of L have the same structure.
T3 supernodes allow sup-col updates, like T2. In addition, if the storage for
a supernode is organized as for a two-dimensional (2-D) array (for Level 2 or
3 BLAS calls), T3 supernodes do not waste any space in the diagonal block
of U.

T4. Same column structure in L and U: A supernode is a range (r:s) of columns of
L and U with identical structure. (Since the diagonal is nonzero, the diagonal
block must be full.) T4 supernodes allow sup-col updates, and also simplify
storage of L and U.

T5. Supernodes of AT A: A supernode is a range (r:s) of columns of L correspond-
ing to a Cholesky supernode of the symmetric matrix A7 A. T5 supernodes
are motivated by George and Ng’s observation [22] that (with suitable rep-
resentations) the structures of L and U in the unsymmetric factorization
PA = LU are contained in the structure of the Cholesky factor of AT A. In
unsymmetric LU, these supernodes themselves are sparse, so we would waste
time and space operating on them. Thus we do not consider them further.

Figure 2.1 is a schematic of definitions T1 through T4.

Supernodes are only useful if they actually occur in practice. The occurrence of
symmetric supernodes is related to the clique structure of the chordal graph of the
Cholesky factor, which arises because of fill during the factorization. Unsymmetric
supernodes seem harder to characterize, but they also are related to dense subma-
trices arising from fill. We measured the supernodes according to each definition for
126 unsymmetric matrices from the Harwell-Boeing sparse matrix test collection [17]
under various column orderings. Table 2.1 shows, for each definition, the fraction of
nonzeros of L that are not in the first column of a supernode; this measures how much
row index storage is saved by using supernodes. Corresponding values for symmetric
supernodes for the symmetric Harwell-Boeing structural analysis problems usually
range from about 0.5 to 0.9. Larger numbers are better, indicating larger supernodes.

724 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

T1 T2 T3 T4

m:|:|:|:|:|:| Columns have same structure % Rows have same structure . Dense

F1a. 2.1. Four possible types of unsymmetric supernodes.

TABLE 2.1
Fraction of nonzeros not in the first column of supernode.

| T1 T2 T3 T4
median | 0.236 0.345 0.326 0.006
mean | 0.284 0.365 0.342 0.052

We reject T'4 supernodes as being too rare to make up for the simplicity of their storage
scheme. T'1 supernodes allow Level 3 BLAS updates, but as we will see in section 3.2
we can get most of their cache advantage with the more common T2 or T3 supernodes
by using supernode-panel updates. Thus we conclude that either T2 or T3 is best by
our criteria. Our code uses T2, which gives slightly larger supernodes than T3 at a
small extra cost in storage (see section 2.2).

Figure 2.2 shows a sample matrix and the nonzero structure of its factors with no
pivoting. Using definition T2, this matrix has four supernodes: {1,2}, {3}, {4, 5,6},
and {7,8,9,10}. For example, in columns 4, 5, and 6 the diagonal blocks of L and U
are full, and the columns of L all have nonzeros in rows 8 and 9. By definition T3, the
matrix has five supernodes: {1,2}, {3}, {4,5,6}, {7}, and {8,9,10}. Column 7 fails
to join {8,9,10} as a T3 supernode because urg is zero.

2.2. Storage of supernodes. A standard way to organize storage for a sparse
matrix is a one-dimensional (1-D) array of nonzero values in column-major order,
plus integer arrays giving row numbers and column starting positions. This is called
compressed column storage and is also the scheme used in the Harwell-Boeing collec-
tion. We use this layout for both L and U, but with a slight modification: we store
the entire square diagonal block of each supernode as part of L, including both the
strict lower triangle of values from L and the upper triangle of values from U. We
store this square block as if it were completely full (it is full in T3 supernodes, but its
upper triangle may contain zeros in T2 supernodes). This allows us to address each
supernode as a 2-D array in calls to BLAS routines. In other words, if columns (r:s)
form a supernode, then all the nonzeros in F'(r:n,r:s) are stored as a single dense 2-D
array. This also lets us save some storage for row indices: only the indices of nonzero
rows outside the diagonal block need be stored, and the structures of all columns
within a supernode can be described by one set of row indices. This is similar to the
effect of compressed subscripts in the symmetric case [41].

We represent the part of U outside the supernodal blocks with compressed column

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 725

1 o o . 1l e
o 2 . e 2 e 0
3 ° 3 °
4 o o ° 4 e °
° ° o 0 °
° 6 . e 0o o e (b o oo
7 ° 7 °
° ° e 0o 0 e 8 e
° ° 9 e e 9 o
° ° e 10 ° ° e 10
Original matrix A Factors F =L+ U — 1

Fia. 2.2. A sample matriz and its LU factors. Diagonal elements ass and agg are zero.

S1 81 U3 Ug
S1 S1 U3 Ug Ue us
52 U7 ug
§3 S3 S3 Ug
§3 83 S3 Ur Ug
S1 81 S2 S3 S3 S3 U7 U Ug
S4 S4 S4
S1 81 S2 S3 S3 S3 S4 S4 S4 54
§3 S3 S3 S4 S4 S4 S4
52 S4 S4 S4 S4

© 00 3O Uik W —

—
o

F1G. 2.3. Supernodal structure (by definition T2) of the factors of the sample matriz.

storage: the values are stored by columns, with a companion integer array the same
size to store row indices; another array of n integers indicates the start of each column.

Figure 2.3 shows the structure of the factors in the example from Figure 2.2,
with s denoting a nonzero in the kth supernode and uj denoting a nonzero in the
kth column of U outside the supernodal block. Figure 2.4 shows the storage layout.
(We omit the indexing vectors that point to the beginning of each supernode and the
beginning of each column of U.)

2.3. The column elimination tree. Since our definition requires the columns
of a supernode to be contiguous, we should get larger supernodes if we bring together
columns of L with the same nonzero structure. But the column ordering is fixed, for
sparsity, before numeric factorization; what can we do?

In symmetric Cholesky factorization, one type of supernodes—the “fundamen-
tal” supernodes—can be made contiguous by permuting the matrix (symmetrically)
according to a postorder on its elimination tree [4]. This postorder is an example of
what Liu calls an equivalent reordering [35], which does not change the sparsity of the
factor. The postordered elimination tree can also be used to locate the supernodes
before the numeric factorization.

We proceed similarly for the unsymmetric case. Here the appropriate analogue
of the symmetric elimination tree is the column elimination tree, or column etree

726 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

456

12 3 789 10

S1 81 S2 S S0 s sS4 0 s4 84

S1 81 6 S92 3; 3; 3; S4 S4 S4 S4

6 S1 51 8 S9 3 Sa S48 S4 S4 S4 S4

3 S1 81 10 S9 9 37373 S4 S4 S4 S4

53 83 83
Supernodal blocks (stored in column-major order)

row 1 2 2 1 2 3 5 6 2 3 6 4 5 6
uz ug Uy Ue Up Uz Uz Uz ug ug ug Ug U9 Ug

Nonzeros in columns of U outside supernodes

Fia. 2.4. Storage layout for factors of the sample matriz, using T2 supernodes.

for short. The vertices of this tree are the integers 1 through n, representing the
columns of A. The column etree of A is the (symmetric) elimination tree of the
column intersection graph of A, or equivalently the elimination tree of AT A provided
there is no cancellation in computing AT A. See Gilbert and Ng [27] for complete
definitions. The column etree can be computed from A in time almost linear in the
number of nonzeros of A by a variation of an algorithm of Liu [35].

The following theorem states that the column etree represents potential depen-
dencies among columns in LU factorization, and that (for strong Hall matrices) no
stronger information is obtainable from the nonzero structure of A. Note that column
i updates column j in LU factorization if and only if u;; # 0.

THEOREM 2.1 (column etree [27]). Let A be a square, nonsingular, possibly
unsymmetric matriz, and let PA = LU be any factorization of A with pivoting by row
interchanges. Let T be the column etree of A.

1. If vertex i is an ancestor of vertex j in T, then i > j.

2. Ifl;; # 0, then vertex i is an ancestor of vertex j in T.

3. If ui; # 0, then vertex j is an ancestor of vertex i in T.

4. Suppose in addition that A is strong Hall (that is, A cannot be permuted to
a nontrivial block triangular form). If vertex j is the parent of vertex i in T,
then there is some choice of values for the nonzeros of A that makes u;; # 0
when the factorization PA = LU is computed with partial pivoting.

Just as a postorder on the symmetric elimination tree brings together symmetric
supernodes, we expect a postorder on the column etree to bring together unsymmetric
supernodes. Thus, before we factor the matrix, we compute its column etree and
permute the matrix columns according to a postorder on the tree. We now show that
this does not change the factorization in any essential way.

THEOREM 2.2. Let A be a matriz with column etree T. Let w be a permutation
such that whenever w(i) is an ancestor of ©w(j) in T, we have i > j. Let P be the
permutation matriz such that T = P - (1:n)T. Let A= PAPT.

1. A= A(r, 7).
2. The column etree T of A is isomorphic to T; in particular, relabeling each
node i of T as m(i) yields T.

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 727

3. Suppose in addition that A has an LU factorization without pivoting, A = LU .
Then PTLP and PTUP are, respectively, unit lower triangular and upper
triangular, so A = (PTLP)(PTUP) is also an LU factorization.

Remark 2.3. Liu [35] attributes to F. Peters a result similar to part 3 for the
symmetric positive definite case, concerning the Cholesky factor and the (usual, sym-
metric) elimination tree.

Proof. Part 1 is immediate from the definition of P. Part 2 follows from Corol-
lary 6.2 in Liu [35], with the symmetric structure of the column intersection graph
of our matrix A taking the place of Liu’s symmetric matrix A. (Liu exhibits the
isomorphism explicitly in the proof of his Theorem 6.1.)

Now we prove part 3. We have ar(ir(j) = @i; for all 7 and j. Write L = PTLP
and U = PTUP, so that lx(iyr(g) = lij and Ur(i)r(j) = Uij. Then A = LU; we need
show only that L and U are triangular.

Consider a nonzero ur(jr(;) of U. In the triangular factorization A= LU, el-
ement U;; is equal t0 Ur(j)x(j) and is therefore nonzero. By part 3 of Theorem 2.1,
then, j is an ancestor of ¢ in T. By the isomorphism between T and T, this implies
that 7(7) is an ancestor of 7(¢) in 7. Then it follows from part 1 of Theorem 2.1 that
m(j) > 7(i). Thus every nonzero of U is on or above the diagonal, so U is upper trian-
gular. A similar argument shows that every nonzero of L is on or below the diagonal,
so L is lower triangular. The diagonal elements of L are a permutation of those of L,
so they are all equal to 1. 0

Since the triangular factors of A are just permutations of the triangular factors
of PAPT | they have the same sparsity. Indeed, they require the same arithmetic to
compute; the only possible difference is the order of updates. If addition for updates
is commutative and associative, this implies that with partial pivoting (i, 7) is a legal
pivot in A if and only if (7 (i), 7(j)) is a legal pivot in A. In floating-point arithmetic,
the different order of updates could conceivably change the pivot sequence. Thus we
have the following corollary.

COROLLARY 2.4. Let m be a postorder on the column etree of A, let P, be any
permutation matrix, and let Py be the permutation matriz with m = Py - (1in)T. If
PLAP] = LU is an LU factorization, then so is (P4 P\)A = (PYLP,)(P{UPR,). In
ezxact arithmetic, the former is an LU factorization with partial pivoting of APY if
and only if the latter is an LU factorization with partial pivoting of A.

This corollary states that an LU code can permute the columns of its input matrix
by postorder on the column etree, and then fold the column permutation into the row
permutation on output. Thus our SuperLU code has the option of returning either
four matrices Py, P, L, and U (with Py AP} = LU), or just the three matrices P Py,
PYLP;, and PLUP,, which are a row permutation and two triangular matrices. The
advantage of returning all four matrices is that the columns of each supernode are
contiguous in L, which permits the use of a Level 2 BLAS supernodal triangular solve
for the forward-substitution phase of a linear system solver. The supernodes are not
contiguous in Pf LP;.

2.4. Relaxed supernodes. We observe that, for most matrices, the average
size of a supernode is only about 2 to 3 columns (though a few supernodes are much
larger). A large percentage of supernodes consists of only a single column, many of
which are leaves of the column etree. Therefore we have devised a scheme to merge
groups of columns at the fringe of the etree into artificial supernodes regardless of
their row structures. A parameter r controls the granularity of the merge. Our merge
rule is: node ¢ is merged with its parent node j when the subtree rooted at j has at

728 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

1. for column j =1 ton do

2 f=ACG5);

3 Symbolic factorization: determine which supernodes of L will update f;
4. Determine whether j belongs to the same supernode as j — 1;

5. for each updating supernode (r:s) < j in topological order do

6 Apply supernode-column update to column j:

7 f(r:s) = L(r:s,r:8)~L - f(r:s); /* Now f(r:s) = Ul(r:s,j) */

8. f(s+1m) = f(s+1in) — L(s + Lin,ris) - f(r:s);

9. end for;

10. Pivot: interchange f(j) and f(m), where |f(m)| = max|f(j:n)|;
11. Separate L and U: U(1:4,5) = f(1:5); L(jmn,j) = f(§:n);

12. Scale: L(j:n,j) = L(j:n,5)/L(4,7);

13. Prune symbolic structure based on column j;

14. end for;

Fic. 3.1. LU factorization with supernode-column updates.

most r nodes. In practice, the best values of r are generally between 4 and 8 and yield
improvements in running time of 5% to 15%.

Artificial supernodes are a special case of relaxed supernodes, which Duff and
Reid [15] and Ashcraft and Grimes [4] have used in the context of multifrontal methods
for systems with symmetric nonzero structure. They allow a small number of zeros
in the structure of any supernode, thus relaxing the condition that the columns must
have strictly nested structures. It would be possible to use this idea in the unsymmetric
code as well, though we have not experimented with it. Relaxed supernodes could be
constructed either on the fly (by relaxing the nonzero count condition described in
section 4.3 below), or by preprocessing the column etree to identify small subtrees
that we would merge into supernodes.

3. Supernodal numeric factorization. Now we show how to modify the col-
col algorithm to use sup-col updates and supernode-panel updates. This section de-
scribes the numerical computation involved in the updates. Section 4 describes the
symbolic factorization that determines which supernodes update which columns and
also the boundaries between supernodes.

3.1. Sup-col updates. Figure 3.1 sketches the sup-col algorithm. The only dif-
ference from the col-col algorithm is that all the updates to a column from a single
supernode are done together. Consider a supernode (r:s) that updates column j. The
coefficients of the updates are the values from a segment of column j of U, namely
U(r:s,j). The nonzero structure of such a segment is particularly simple: all the
nonzeros are contiguous, and follow all the zeros (as proved in Corollary 4.2, which
appears in section 4.1). Thus, if k is the index of the first nonzero row in U(r:s, j),
the updates to column j from supernode (r:s) come from columns k through s. Since
the supernode is stored as a dense matrix, these updates can be performed by a
dense lower triangular solve (with the matrix L(k:s, k:s)) and a dense matrix-vector
multiplication (with the matrix L(s + 1:n, k:s)). As described in section 4, the sym-
bolic phase determines the value of &, that is, the position of the first nonzero in the
segment U (r:s, j).

The advantages of using sup-col updates are similar to those in the symmetric
case [37]. Efficient Level 2 BLAS matrix-vector kernels can be used for the triangular
solve and matrix-vector multiply. Furthermore, all the updates from the supernodal

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 729

1. for column j =1 to n step w do
2. Symbolic factor: determine which supernodes will update any of L(:,j:j +w — 1);
3. for each updating supernode (r:s) < j in topological order do
4. for column jj=jtoj+w—1do
5. Apply supernode-column update to column jj;
6. end for;
7. end for;
8. Inner factorization:
Apply the sup-col algorithm on columns and supernodes within the panel;
9. end for;

j jtw-1

W

FiG. 3.2. The supernode-panel algorithm, with columnwise blocking. J = 1:5 — 1.

columns can be collected in a dense vector before doing a single scatter into the target
vector. This reduces the amount of indirect addressing.

3.2. Supernode-panel updates. We can improve the sup-col algorithm further
on machines with a memory hierarchy by changing the data access pattern. The data
we are accessing in the inner loop (lines 5-9 of Figure 3.1) include the destination
column j and all the updating supernodes (r:s) to the left of column j. Column j
is accessed many times, while each supernode (r:s) is used only once. In practice,
the number of nonzero elements in column 5 is much less than that in the updating
supernodes. Therefore, the access pattern given by this loop provides little opportunity
to reuse cached data. In particular, the same supernode (r:s) may be needed to update
both columns j and j+1. But when we factor the (j+1)st column (in the next iteration
of the outer loop), we will have to fetch supernode (r:s) again from memory, instead
of from cache (unless the supernodes are small compared to the cache).

3.2.1. Panels. To exploit memory locality, we factor several columns (say w
of them) at a time in the outer loop, so that one updating supernode (r:s) can be
used to update as many of the w columns as possible. We refer to these w consecutive
columns as a panel to differentiate them from a supernode; the row structures of these
columns may not be correlated in any fashion, and the boundaries between panels
may be different from those between supernodes. The new method requires rewriting

730 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

the doubly nested loop as the triple loop shown in Figure 3.2. This is analogous to
loop tiling techniques used in optimizing compilers to improve cache behavior for 2-D
arrays with regular stride. It is also somewhat analogous to the sup-sup updates that
Ng and Peyton [37] and Rothberg and Gupta [38] have used in symmetric Cholesky
factorization.

The structure of each sup-col update is the same as in the sup-col algorithm. For
each supernode (r:s) to the left of column j, if ug; # 0 for some r < k < s, then
uij # 0 for all k£ <4 < s. Therefore, the nonzero structure of the panel of U consists
of dense column segments that are rowwise separated by supernodal boundaries, as
in Figure 3.2. Thus, it is sufficient for the symbolic factorization algorithm to record
only the first nonzero position of each column segment. As detailed in section 4.4,
symbolic factorization is applied to all the columns in a panel at once, over all the
updating supernodes, before the numeric factorization step.

In dense factorization, the entire supernode-panel update in lines 3—7 of Figure 3.2
would be implemented as two Level 3 BLAS calls: a dense triangular solve with w
right-hand sides, followed by a dense matrix-matrix multiply. In the sparse case, this is
not possible, because the different sup-col updates begin at different positions k£ within
the supernode, and the submatrix U(r:s,j:j + w — 1) is not dense. Thus the sparse
supernode-panel algorithm still calls the Level 2 BLAS. However, we get similar cache
benefits to those from the Level 3 BLAS, at the cost of doing the loop reorganization
ourselves. Thus we sometimes call the kernel of this algorithm a “BLAS-2%” method.

In the doubly nested loop (lines 3-7 of Figure 3.2), the ideal circumstance is that
all w columns in the panel require updates from supernode (r:s). Then this supernode
will be used w times before it is forced out of the cache. There is a trade-off between
the value of w and the size of the cache. For this scheme to work efficiently, we need
to ensure that the nonzeros in the w columns do not cause cache thrashing. That is,
we must keep w small enough so that all the data accessed in this doubly nested loop
fit in cache. Otherwise, the cache interference between the source supernode and the
destination panel can offset the benefit of the new algorithm.

3.2.2. Outer and inner factorization. At the end of the supernode-panel
update (line 7), columns j through j +w — 1 of L and U have received all their
updates from columns to the left of j. We call this the outer factorization. What
remains is to apply updates that come from columns within the panel. This amounts
to forming the LU factorization of the panel itself (in columns (j:j + w — 1) and
rows (j:n)). This inner factorization is performed by the sup-col algorithm, almost
exactly as shown in Figure 3.1. The inner factorization includes a columnwise symbolic
factorization just as in the sup-col algorithm. The inner factorization also includes the
supernode identification, partial pivoting, and symmetric structure reduction for the
entire algorithm. Section 4 contains details of the inner factorization.

3.2.3. Reducing cache misses by rowwise blocking. Our first experiments
with the supernode-panel algorithm showed speedups for some medium-sized problems
of around 20-30%. However, the improvement for large matrices was often only a few
percentage points. We now study the reasons and remedies for this.

To implement loops (lines 3-7 of Figure 3.2), we first expand the nonzeros of the
panel columns of A into an n by w full working array, called the sparse accumulator [26]
or SPA. This allows random access to the entries of the active panel. A temporary
array stores the results of the BLAS operations, and the updates are scattered into
the SPA. At the end of panel factorization, the data in the SPA are copied into storage
for L and U. Although increasing the panel size w gives more opportunity for data

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 731

1. for j =1 to n step w do

2. e

3. for each updating supernode (r:s) < j in topological order do
4. Apply triangular solves to A(r:s,j:j +w — 1) using L(r:s,7:5);
5. for each row block B in L(s + 1:n,r:s) do

6. for jj=jtoj+w—1do

7. Multiply B - U(r:s, jj), and scatter into SPA(:, j5);
8. end for;

9. end for;

10. end for;

11.

12 end for;

Fic. 3.3. The supernode-panel algorithm, with 2-D blocking.

reuse, it also increases the size of the active data set that must fit into cache. The
supernode-panel update loop accesses the following data:

e the nonzeros in the updating supernode L(r:n,r:s);
e the SPA data structure, consisting of an n by w full array and a temporary
store of size n.

By instrumenting the code, we found that the working sets of large matrices are much
larger than the cache size. Hence, cache thrashing limits performance.

We experimented with a scheme suggested by Rothberg [39], in which the SPA
has only as many rows as the number of nonzero rows in the panel (as predicted by
symbolic factorization), and an extra indirection array of size n is used to address the
SPA. Unfortunately, the cost incurred by double indirection is not negligible, and this
scheme was not as effective as the 2-D blocking method we now describe.

We implemented a rowwise blocking scheme on top of the columnwise blocking in
the supernode-panel update. The 2-D blocking adds another level of looping between
the two loops in lines 3 and 4 of Figure 3.2. This partitions the supernodes (and the
SPA structure) into block rows. Then each block row of the updating supernode is used
for up to w partial matrix-vector multiplies, which are pushed all the way through
into the SPA before the next block row of the supernode is accessed. The active data
set accessed in the inner loops is thus much smaller than in the 1-D scheme. The 2-
D blocking algorithm is organized as in Figure 3.3. The key performance gains come
from the loops (lines 5-9), where each row block is reused as much as possible before
the next row block is brought into the cache. The innermost loop is still a dense
matrix-vector multiply, performed by a Level 2 BLAS kernel.

3.2.4. Combining 1-D and 2-D blocking. The 2-D blocking works well when
the rectangular supernodal matrix L(r:n,r:s) is large in both dimensions. If all of
L(r:n,r:s) fits in cache, then the rowwise blocking gives no benefit, but still incurs
overhead for setting up loop variables, skipping the empty loop body, and so on.
This overhead can be nearly 10% for some of the sparser problems. Thus we have
devised a hybrid update algorithm that uses either the 1-D or 2-D partitioning scheme,
depending on the size of each updating supernode. This decision is made at runtime,
with the overhead limited to a one-line test. It turns out that this hybrid scheme
works better than either 1-D or 2-D code for many problems. Therefore, this is the
algorithm that we used in our code.

732 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

4. Symbolic factorization. Symbolic factorization is the process that deter-
mines the nonzero structure of the triangular factors L and U from the nonzero
structure of the matrix A. This in turn determines which columns of L update each
column j of the factors (namely, those columns r for which u,; # 0), and also deter-
mines which columns of L can be combined into supernodes.

Without numeric pivoting, the complete symbolic factorization can be performed
before any numeric factorization. Partial pivoting, however, requires that the numeric
and symbolic factorizations be interleaved. The sup-col algorithm performs symbolic
factorization for each column just before it is computed, as described in section 4.1.
The supernode-panel algorithm performs symbolic factorization for an entire panel at
once, as described in section 4.4.

4.1. Column depth-first search. From the numeric factorization algorithm, it
is clear that the structure of column F(:, j) depends on the structure of column A(:, j)
of the original matrix and on the structure of L(: , J), where J = 1:5—1. Indeed, F(:, j)
has the same structure as the solution vector for the following triangular system [29]:

A straightforward way to compute the structure of F(:,j) from the structures of
L(:,J) and A(:,7) is to simulate the numerical computation. A less expensive way is
to use the following characterization in terms of paths in the directed graph of L(:, J).

For any matrix M, the notation M j means that there is an edge from i to j
in the directed graph of M, that is, m;; # 0. Edges in the directed graph of M are

directed from rows to columns. The notation i —= j means that there is a directed
path from ¢ to j in the directed graph of M. Such a path may have length zero; that

is, % M always holds.

THEOREM 4.1 (see [24]). fi; is nonzero (equivalently, i LR J) if and only if

iLg)kﬁjforsomekgi.

This result implies that the symbolic factorization of column j can be obtained
as follows. Consider the nonzeros in A(:, j) as a subset of the vertices of the directed
graph G = G(L(:,J)T), which is the reverse of the directed graph of L(:,.J). The
nonzero positions of F(:,j) are then given by the vertices reachable by paths from
this set in G. We use the graph of LT here because of the convention that edges
are directed from rows to columns. Since L is actually stored by columns, our data
structure gives precisely the adjacency information for G. Therefore, we can determine
the structure of column j of L and U by traversing G from the set of starting nodes
given by the structure of A(:, 7).

The traversal of G determines the structure of U(:, j), which in turn determines
the columns of L that will participate in updates to column j in the numerical fac-

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 733

torization. These updates must be applied in an order consistent with a topological
ordering of G. We use depth-first search to perform the traversal, which makes it pos-
sible to generate a topological order (specifically, reverse postorder) on the nonzeros
of U(:,j) as they are located [29)].

Another consequence of the path theorem is the following corollary. It states that
if we divide each column of U into segments, one per supernode, then within each
segment the column of U consists of a consecutive sequence of nonzeros. Thus we need
only keep track of the position of the first nonzero in each segment.

COROLLARY 4.2. Let (r: s) be a supernode (of either type T2 or T3) in the factor-
ization PA = LU. Suppose uy; is nonzero for some j with r <k < s. Then u;; # 0
for all i with k <1 < s. Le) N

Proof. Let k < i < s. Since ug; # 0, we have k =" m — j for some m < k
by Theorem 4.1. Now [;; is in the diagonal block of the supernode, and hence is

. L(:,J) . L(:,J) A . .
nonzero. Thus ¢ —" k, so i =" m — j, whence u;; is nonzero by Theorem

4.1. O

4.2. Pruning the symbolic structure. We can speed up the depth-first search
traversals by using a reduced graph in place of G, the reverse of the graph of L(:, J).
We have explored this idea in a series of papers [20, 21, 25]. Any graph H can be

substituted for G, provided that 4 N j if and only if ¢ N j. The traversals are more
efficient if H has fewer edges; but any gain in efficiency must be traded off against
the cost of computing H.

An extreme choice of H is the elimination directed acyclic graph (elimination
dag) [25], which is the transitive reduction of G, or the minimal subgraph of G that
preserves paths. However, the elimination dag is expensive to compute. The symmetric
reduction [20] is a subgraph that has (in general) fewer edges than G but more edges
than the elimination dag, and that is much less expensive to compute. The symmetric
reduction takes advantage of symmetry in the structure of the filled matrix F; if F
is completely symmetric, it is just the symmetric elimination tree. The symmetric
reduction of L(:,J) is obtained by removing all nonzeros l,s for which l;sus # 0 for
some t < min(r,j). Eisenstat and Liu [21] give an efficient method to compute the
symmetric reduction during symbolic factorization and demonstrate experimentally
that it significantly reduces the total factorization time when used in an algorithm
that does col-col updates.

Our supernodal code uses symmetric reduction to speed up its symbolic factoriza-
tion. Using the sample matrix in Figure 2.2, Figures 4.1 and 4.2 illustrate symmetric
reduction in the presence of supernodes. We use S to represent the supernodal struc-
ture of L(:,J)T and R to represent the symmetric reduction of S. It is this R that
we use in our code. Note that the edges of the graph of R are directed from columns
of L to rows of L.

In the figures, the symbol “©@” indicates an entry in S that was pruned from R by
symmetric reduction. The (8,2) entry was pruned due to the symmetric nonzero pair
(6,2) and (2,6). The figure shows the current state of the reduced structure based on
the first seven columns of the filled matrix.

It is instructive to follow this example through one more column to see how
symbolic factorization is carried out in the reduced supernodal structure. Consider
the symbolic step for column 8. Suppose asg and asg are nonzero. The other nonzeros
in column 8 of the factor are generated by paths in the reduced supernodal structure
(we show just one possible path for each nonzero):

st ol

734 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

° 1 1
e 2 e 0 2 2 2
3 ° 3 3 3
° 4 4
5 e @ 5 5} 5
e o o o (G o o o o e 6 e o (6 e o 6
7 7 7 7
e o 0 ° e o o ° e 0o 0 0 Q e °
° ° o 0 °
° ° ° ° ° ° ° °
Filled matrix Lower triangle Supernodal Reduced
F(.,J) G S R

Fic. 4.1. Supernodal and symmetrically reduced structures.

1 1
2 2
3 ° 3
4 4
) 5
e o 6 o:> e o 6
7 7
© e e e © e e e 8
° °
e e (%) °

F1c. 4.2. One step of symbolic factorization in the reduced structure.

A R
— 3 —

s 3Ry
g o lg g

T
84 32 0.

Figure 4.2 shows the reduced supernodal structure before and after column 8. In

[1P%]

column 8 of A, the original nonzeros are shown as “e” and the fill nonzeros are shown
as “o”. Once the structure of column 8 of U is known, more symmetric reduction is
possible. The entry l19 3 is pruned due to the symmetric nonzeros in lgz and uss. Also,
lgg is pruned by lgg and ugg. Figure 4.2 shows the new structure.

The supernodal symbolic factorization relies on the path characterization in The-
orem 4.1 and on the path-preserving property of symmetric reduction. In effect, we

use the modified path condition

T

) R .
i —=m=7

on the symmetrically reduced supernodal structure R of L(:, J)%.

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 735

4.3. Detecting supernodes. Since supernodes consist of contiguous columns
of L, we can decide at the end of each symbolic factorization step whether the new
column j belongs to the same supernode as column j — 1.

For T2 supernodes, the test is straightforward. During symbolic factorization, we
test whether L(:,j) C L(:,j —1) (where the containment applies to the set of nonzero
indices). At the end of the symbolic factorization step, we test whether nnz(L(:,j)) =
nnz(L(:,j — 1)) — 1. Column j joins column (j — 1)’s supernode if and only if both
tests are passed.

T3 supernodes also require the diagonal block of U to be full. To check this, it
suffices to check whether the single element u,; is nonzero, where 7 is the first column
index of the supernode. This follows from Corollary 4.2: u,; # 0 implies that u;; # 0
for all » < i < j. Indeed, we can even omit the test L(:,j) C L(:,j — 1) for T3
supernodes. If u,; # 0, then w;_;; # 0, which means that column j — 1 updates
column j, which implies L(:,j) C L(:,j — 1). Thus we have proved the following
theorem.

THEOREM 4.3. Suppose a T3 supernode begins with column r and extends at least
through column j — 1. Column j belongs to this supernode if and only if u,; # 0 and
nnz(L(:, 7)) = nnz(L(:;,j — 1)) — 1.

For either T2 or T3 supernodes, it is straightforward to implement the relaxed
versions discussed in section 2.4. Also, since the main benefits of supernodes come
when they fit in the cache, we impose a maximum size for a supernode.

4.4. Panel depth-first search. The supernode-panel algorithm consists of an
outer factorization (applying updates from supernodes to the active panel) and an
inner factorization (applying sup-col updates within the active panel). Each has its
own symbolic factorization. The outer symbolic factorization happens once per panel
and determines two things: (1) a single column structure, which is the union of the
structures of the panel columns, and (2) which supernodes update each column of the
panel, and in what order. This is the information that the supernode-panel update
loop in Figure 3.2 needs.

The inner symbolic factorization happens once for each column of the panel,
interleaved column by column with the inner numeric factorization. In addition to
determining the nonzero structure of the active column and which supernodes within
the panel will update the active column, the inner symbolic factorization is also re-
sponsible for forming supernodes (that is, for deciding whether the active column will
start a new supernode) and for symmetric structural pruning. The inner symbolic
factorization is, therefore, exactly the sup-col symbolic factorization described above.

The outer symbolic factorization must determine the structures of columns j to
j +w — 1, i.e., the structure of the whole panel, and also a topological order for
U(1:4,7:5 +w —1) en masse. To this end, we developed an efficient panel depth-first
search scheme, which is a slight modification of the column depth-first search. The
panel depth-first search algorithm maintains a single postorder depth-first search list
for all w columns of the panel. Let us call this the PO list, which is initially empty.
The algorithm invokes the column depth-search procedure for each column from j to
7+ w — 1. In the column depth-first search, each time the search backtracks from a
vertex, that vertex is appended to the PO list. In the panel depth-first search, however,
the vertex is appended to the PO list only if it is not already on the list. This gives
a single list that includes every position that is nonzero in any panel column, just
once; and the entire list is in (reverse) topological order. Thus the order of updates
specified by the list is acceptable for each of the w individual panel columns.

736 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

ot

0

[]

[]

(=]

[¢]
® ¢ O e o O o
@/

o
e o o I

Reduced supernodal R A(:,8:9)

FIG. 4.3. The supernodal directed graph corresponding to L(1:7,1:7)T.

We illustrate the idea in Figure 4.3, using the sample matrix from Figures 4.1
and 4.2, and a panel of width two. The first seven columns have been factored, and
the current panel consists of columns 8 and 9. In the panel, nonzeros of A are shown
as “e” and fill in F' is shown as “o”. The depth-first search for column 8 starts from
vertices 2 and 3. After that search is finished, the panel postorder list is PO = (6, 2, 3).
Now the depth-first search for column 9 starts from vertices 6 and 7 (not 4, since 6
is the representative vertex for the supernode containing column 4). This depth-first
search only appends 7 to the PO list, because 6 is already on the list. Thus, the final
list for this panel is PO = (6,2,3,7). The postorder list of column 8 is (6,2, 3) and
the postorder list of column 9 is (6, 7), which are simply two sublists of the panel PO
list. The topological order is the reverse of PO, or (7,3,2,6). In the loop of line 3 of
Figure 3.2, we follow this topological order to schedule the updating supernodes and
perform numeric updates to columns of the panel.

5. Evaluation. In this section, we evaluate our algorithms using matrices from
several applications and several sources. We compare the performance of SuperLU,
our supernode-panel code, with its predecessors and with one other approach to sparse
LU factorization.

5.1. Experimental setup. Table 5.1 lists 23 matrices with some characteristics
of their nonzero structures. Some of the matrices are from the Harwell-Boeing collec-
tion [17]. Many of the larger matrices are from the ftp site maintained by Tim Davis
of the University of Florida.? Those matrices are as follows: MEMPLUS is a circuit
simulation matrix from Steve Hamm of Motorola. RDIST1 is a reactive distillation
problem in chemical process separation calculations, provided by Stephen Zitney at
Cray Research, Inc. SHYY161 is derived from a direct, fully coupled method for solv-
ing the Navier—Stokes equations for viscous flow calculations, provided by Wei Shyy
of the University of Florida. GOODWIN is a finite element matrix in a nonlinear solver
for a fluid mechanics problem, provided by Ralph Goodwin of the University of Illinois
at Urbana—Champaign. VENKATO01, INACCURA, and RAEFSKY3/4 were provided by
Horst Simon, then of NASA. VENKATO1 comes from an implicit 2-D Euler solver for
an unstructured grid in a flow simulation. RAEFSKY3 is from a fluid structure interac-
tion turbulence problem. RAEFSKY4 is from a buckling problem for a container model.

3URL: http://www.cis.ufl.edu/~davis

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 737

TABLE 5.1
Characteristics of the test matrices. Structural symmetry s is the fraction of the monzeros
matched by nonzeros in symmetric locations. None of the matrices are numerically symmetric.

Matrix s n nnz(A) nnz(A)/n
1 MEMPLUS .983 | 17758 99147 5.6
2 GEMAT11 .002 4929 33185 6.7
3 RbpisT1 .062 4134 9408 2.3
4 ORANIGT78 .073 2529 90158 35.6
5 MCFE .709 765 24382 31.8
6 LNsP3937 .869 3937 25407 6.5
7 LNs3937 .869 3937 25407 6.5
8 SHERMANDH 780 3312 20793 6.3
9 JPwH991 947 991 6027 6.1
10 SHERMAN3 1.000 5005 20033 4.0
11 ORSREG1 1.000 2205 14133 6.4
12 SAYLR4 1.000 3564 22316 6.3
13 SHYY161 769 | 76480 329762 4.3
14 GOODWIN .642 7320 324772 44.4
15 VENKATO1 1.000 | 62424 | 1717792 27.5
16 INACCURA 1.000 | 16146 | 1015156 62.9
17 AFr23560 .947 | 23560 460598 19.6
18 DENSE1000 | 1.000 1000 | 1000000 1000
19 RAEFSKY3 1.000 | 21200 | 1488768 70.2
20 Ex11 1.000 | 16614 | 1096948 66.0
21 WANG3 1.000 | 26064 177168 6.8
22 RAEFSKY4 1.000 | 19779 | 1316789 66.6
23 VAvVAsIs3 .001 | 41092 | 1683902 41.0

TABLE 5.2

Machines used to compare various column LU codes. Column “#” is mazimum number of
instruction issues per clock cycle.

Clock On-chip External Peak DGEMM DGEMV

MHz cache cache # Mflops Mflops Mflops

IBM RS/6000-590 66.5 256 KB 6 266 250 235

SGI MIPS R8000 90 16 KB 4 MB 4 360 340 210

DEC Alpha 21164 300 8 KB-L1 4 MB 4 600 350 135
96 KB-L2

SUN UltraSparc-I 143 16 KB 512 KB 4 286 227 -

A¥r23560 is from solving an unsymmetric eigenvalue problem, provided by Zhaojun
Bai of the University of Kentucky. Ex11 is from a three-dimensional (3-D) steady
flow calculation in the SPARSKIT collection maintained by Youcef Saad at the Uni-
versity of Minnesota. WANG3 is from solving a coupled nonlinear PDE system in a
3-D (30 x 30 x 30 uniform mesh) semiconductor device simulation, as provided by Song
Wang of the University of New South Wales, Sydney. VAVASIS3 is an unsymmetric
augmented matrix for a 2-D PDE with highly varying coefficients [44]. DENSE1000 is
a dense 1000 x 1000 random matrix.

The matrices are sorted in increasing order of flops/nnz(F'), the ratio of the
number of floating-point operations to the number of nonzeros nnz(F’) in the factored
matrix ' =U + L — I. The reason for this order will be described in more detail in
section 5.4.

This paper does not address the performance of column preordering for sparsity.
We simply use the existing ordering algorithms provided by Matlab [26]. For all

738 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

matrices, except 1, 15, and 21, the columns were permuted by Matlab’s minimum
degree ordering of AT A, also known as “column minimum degree.” However, this
ordering produces excessive fill for matrices 1, 15, and 21, because it attempts only
to minimize the upper bound on the actual fill, and the upper bounds are too loose
in these cases. When these three matrices are symmetrically permuted by Matlab’s
symmetric minimum degree ordering on A + A’ the amount of fill is much smaller
than using column minimum degree ordering.

We conducted performance analysis on high-end workstations from four vendors
(IBM, SGI, DEC, and SUN). Some characteristics of these machines are tabulated
in Table 5.2. The instruction caches, if separate from the data cache, are not listed
in the table. In most cases, the on-chip L1 caches are fairly small, so we use either
the L2 cache or the off-chip cache as a reference. The DGEMM and DGEMYV Mflop
rates were measured using vendor-supplied BLAS libraries. (Exception: SUN does
not supply a BLAS library, so we report the DGEMM speed from PHIiPAC [6].
PHIiPAC does not include DGEMYV.) Our UltraSparc-I has less physical memory
than the other machines, so some large problems could not be tested on this machine.

5.2. Performance of SuperLU on an IBM RS/6000-590. Table 5.3 pre-
sents the performance of SuperLU on this system. The CPU clock rate is 66.5 MHz.
The processor has two branch units, two fixed-point units, and two floating-point
units, which can all operate in parallel if there are no dependencies. Each FPU can
perform two operations (a multiply and an add or subtract) in each cycle. Thus,
the peak floating-point performance is 266 Mflops. The size of the main memory
is 768 MB. SuperLU is implemented in C; we used the AIX xlc compiler with -O3
optimization. All floating-point computations are performed in double precision.

In the inner loops of our sparse code, we call the two Level 2 BLAS routines
DTRSV (triangular solve) and DGEMV (matrix-vector multiply) provided in the
IBM ESSL library [32], whose BLAS-3 matrix-matrix multiply routine (DGEMM)
achieves about 250 Mflops when the dimension of the matrix is larger than 60 [1]. In
our sparse algorithm, we find that DGEMYV typically accounts for more than 80% of
the floating-point operations. As shown in the second to last column of Table 5.3, this
percentage is 95% higher than for many matrices. Our measurements reveal that for
typical dimensions arising from the benchmark matrices, DGEMYV achieves roughly
235 Mflops if the data are from cache. If the data are fetched from main memory, this
rate can drop by a factor of 2 or 3.

The BLAS speed is clearly an upper bound on the overall factorization rate.
However, because symbolic manipulation usually takes a nontrivial amount of time,
this bound could be much higher than the actual sparse code performance. The last
column in Table 5.3 presents the percentage of the total execution time spent in
numeric computation. For matrices 1 and 2, the program spent less than 35% of its
time in the numeric part. Compared to the others, these two matrices are sparser, have
less fill, and have smaller supernodes, so our supernodal techniques are less applicable.
Matrix 2 is also highly unsymmetric, which makes the symmetric structural reduction
less effective. However, it is important to note that the execution times for these two
matrices are small.

For larger and denser matrices such as 18-23, the algorithm achieves between
110 and 125 Mflops, which is about half of the machine peak. These matrices take
much longer to factor, which could be a serious bottleneck in an iterative simulation
process. Our techniques are successful in reducing the solution times for this type of
problem.

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 739

TABLE 5.3
Performance of SuperLU on an IBM RS/6000-590.

#fops Time % flops % num
Matrix nnz(F) ZZ;EZ; (109) (sec) Mflops DGEMV time

1 MEMPLUS 140388 1.4 1.8 0.57 3.08 70 16
2 GEMATI11 93370 2.8 1.5 0.27 5.64 82 33
3 RbpisT1 338624 3.6 12.9 0.96 13.47 85 48
4 ORANIGT8 280788 3.1 14.9 1.11 13.48 98 51
5 McFE 69053 2.8 4.1 0.24 17.42 96 54
6 LNsP3937 427600 16.8 38.9 1.50 25.97 95 48
7 LNs3937 449346 17.7 44.8 1.65 27.16 96 48
8 SHERMANDS 249199 12.0 25.2 0.82 30.78 93 57
9 JPwWHI91 140746 23.4 18.0 0.52 34.57 94 58
10 SHERMAN3 433376 21.6 60.6 1.37 44.24 85 56
11 ORSREG1 402478 28.5 59.8 1.21 49.42 87 50
12 SAYLR4 654908 29.3 104.8 2.18 48.07 87 57
13 SHYY161 7634810 23.2 1571.6 25.42 61.83 88 57
14 GOODWIN 3109585 9.6 665.1 12.55 52.99 92 63
15 VENKATO1 12987004 7.6 3219.9 42.99 74.90 91 63
16 INACCURA 9941478 9.8 4118.7 67.73 60.81 96 64
17 AF23560 13986992 30.4 6363.7 75.91 83.83 92 73
18 DENSE1000 1000000 1.0 666.2 5.68 117.28 93 72
19 RAEFSKY3 17544134 11.8 12118.7 | 107.60 112.62 94 77
20 Ex11 26207974 23.8 | 26814.5 | 247.05 108.54 95 81
21 WANG3 13287108 74.9 | 14557.5 | 116.58 124.86 96 81
22 RAEFsKY4 26678597 20.3 | 31283.4 | 263.13 118.89 97 83
23 VAvAsis3 49192880 29.2 | 89209.3 | 786.94 113.36 98 80

For a dense 1000 x 1000 matrix, our code achieves 117 Mflops. This may be
compared to 168 Mflops reported in the LAPACK manual [3] on a matrix of this
size, and 236 Mflops reported in the online Linpack benchmark files [36].

5.3. Comparison with previous column LU algorithms. In this section,
we compare the performance of SuperLLU with three of its predecessors, including the
column code GP by Gilbert and Peierls [29] (Figure 1.1), GP-Mod by Eisenstat and
Liu [21] (section 4.2), and SupCol by Eisenstat, Gilbert, and Liu [19] (Figure 3.1). GP
and GP-Mod were written in Fortran. SupCol was first written in Fortran, and later
translated literally into C; no changes in algorithms or data structures were made in
this translation. SuperLU is written in C. (Matlab contains C implementations of GP
and GP-Mod [26], which we did not test here.)

For the Fortran codes, we use Fortran 77 compilers; for the C codes, we use
ANSI C compilers. In all cases, we use highest possible optimization provided by each
compiler. Both SupCol and SuperLU call Level 2 BLAS routines. For the RS/6000-
590, we use the BLAS routines from IBM’s ESSL library. For the DEC Alpha, we use
the BLAS routines from DEC’s DXML library. There are no vendor-supplied BLAS
libraries on the Sparc, so we use our own routines implemented in C.

Tables 5.4 through 5.7 present the results of comparisons on the four machines.
The blocking parameters w, t, and b (Figure 5.6) for SuperLU are chosen according
to the size of the data cache (Table 5.2) and are reported in each comparison table.
In all these tables, the column labeled “GP” gives the raw factorization time in sec-
onds of GP. The numbers in each successive column are speedups achieved by the
corresponding enhancement over GP. Thus, for example, a speedup of 2 means that
the running time was half that of GP. The numbers in the last two rows of each table

740 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

35
30F ©—»o SuperLU]
+——+ SupCol
25 *x—x% GP-Mod BLAS-2.5 b
o x—x GP
o
©20r b
>
S
o
3
o 15- 7
g BLAS-2
N
10+ b
5r BLAS-1 B
BLAS-1
O 1 1 1 1 1 1 1 1 1

1 3 5 7 9 11 13 15 17 19 21
Matrix

F1G. 5.1. Speedups of each enhancement over GP on the MIPS R8000.

show the average speedup and its standard deviation.

Figure 5.1 gives a visual look at the speedups for SuperLU over its predecessors
on one of the workstations we experimented with (using data from Table 5.5). Of
course, machines with different memory architectures would give different plots.

We make the following observations from these results:

e The symmetric structure pruning in GP-Mod is very effective in reducing
the graph search time. This significantly decreases the symbolic factorization
time in the GP code. It achieves speedup for all problems, on all machines.
Its average speedup on the RS/6000-590 is 3.64, the highest among all the
machines.

e Supernodes in SupCol restrict the search to the supernodal graph and allow
the numeric kernels to employ dense BLLAS-2 operations. The effects are not
as dramatic as the pruning technique. For some matrices, such as 1-3, the
runtimes are actually longer than GP-Mod. This is because supernodes are
often small in the sparser matrices.

e Supernode-panel updates in SuperLLU reduce the cache miss rate and exploit
dense substructures in the factor F'. For problems without much structure, the
gain is often offset by various overheads. However, the advantage of SuperLU
over SupCol becomes significant for larger or denser problems, or on machines
with small cache, such as Alpha 21164, on which SuperLLU achieves more than
a factor of 2 speedup over SupCol for the six large matrices 18-23.

With more and more sophisticated techniques introduced, the added complica-
tions of the code increase the runtime overhead to some extent. This overhead can
show up prominently in small or very sparse problems. The two supernodal codes are
particularly sensitive to the characteristics of the problems. This can be seen from the

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING

(a) Ops—per—nz as Predictor

741

(b) Ops—per—nz as Predictor

20 140
o
120 o
a 15 o © ® © °
o ? o £ 100
6 = o)
> = 80
2 10 L° < OO
° o
® o © 9 60 o
3 | & 5 0] S
0 5 ﬁ 0 é)
o 28
0 d 0
0 500 1000 1500 2000 500 1000 1500 2000
ops—per—nz ops—per—nz
(c) Ops—per-ref as Predictor (d) Ops—per-ref as Predictor
20 140
120 o, N
+ + +
515 ot 2 100
) = +
> = 80
2 10 * . < *
T 60 + +
§ R o ++ +
3 + (=3 +
n 5 + o 40 .
+
++
+ ++ + 20 .
N + . + +
o—+ o+
6 8 10 12 14 16 8 10 12 14 16
ops—per-ref ops—per-ref

Fi1c. 5.2. Matriz characteristics as predictors of performance.

large standard deviations of their average speedups.

5.4. Understanding cache behavior and parameters. We now analyze the
behavior of SuperLU in detail. We wish to understand when our algorithm is signifi-
cantly faster than other algorithms. We would like performance-predicting variable(s)
that depend on “intrinsic” properties of the problem, such as the sparsity structure,
rather than algorithmic details and machine characteristics.

5.4.1. How much cache reuse can we expect? As discussed in section 3.2,
the supernode-panel algorithm gets its primary gains from improved data locality by
reusing a cached supernode several times. To understand how much cache reuse we
can
hope for, we computed two statistics: ops-per-nz and ops-per-ref. After defining these
statistics carefully, we discuss which more successfully measures reuse.

Ops-per-nz is simply calculated as # flops/nnz(F'), the total number of floating-
point operations per nonzero in the filled matrix F. If there were perfect cache be-
havior, i.e., one cache miss per data item (ignoring the effect of cache line size), then
ops-per-nz would exactly measure the amount of work per cache miss. In reality, ops-
per-nz is an upper bound on the reuse. Note that ops-per-nz depends only on the fact
that we are performing Gaussian elimination with partial pivoting, not on implemen-
tation or machine details. Ops-per-nz is a natural measure of potential data reuse,
because it has long been used to distinguish among the different levels of BLAS.

742 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

15

=
o
T
I

Mean supernode size in columns

@
T

0 I I I I I I I I I I I
1 3 5 7 9 1 13 15 17 19 21 23

Matrix number

Fic. 5.3. Mean number of columns per supernode.

In contrast, ops-per-ref provides a lower bound on cache reuse and does depend
on the details of the SuperLU algorithm. Ops-per-ref looks at each supernode-panel
update separately and assumes that all the associated data are outside the cache
before beginning the update. This pessimistic assumption limits the potential reuse
to twice the panel size, 2 w.

Now we describe how we compute the average ops-per-ref for the entire factor-
ization. Consider a single update from supernode (r:s) to panel (j:j 4+ w — 1). We
assume that the supernode entry is brought into cache from main memory exactly
once for the entire supernode-panel update, if it is used at all. Thus, during a single
supernode-panel update, each entry accessed in the updating supernode accounts for
between 2 and 2w operations per reference. Define kmin to be the number of the first
row containing a nonzero in the panel,

fmin = _min {k[k= min{i| AG,jj) # 0} -
Then nnz(L(r:n, kmin: s)) entries of the supernode are referenced in the supernode-
panel update. The dense triangular solve in column jj of the update takes (s — k +
1) - (s — k) flops. The matrix-vector multiply takes 2- (s — k + 1) - nnz(L(s + 1:n, s))
flops. (We count both additions and multiplications.) For all panel updates, we sum
the memory reference counts and the flop counts, then divide the second sum by the
first to arrive at an average ops-per-ref. Ops-per-ref ranges from 2 to 2w, with larger
values indicating better cache use.

Figure 5.2 plots these two statistics against the speedup SuperLU achieved over
the col-col code GP and against SuperLU’s raw execution rate. It is clear that (perhaps
surprisingly) ops-per-nz is superior to ops-per-ref as a predictor of either of these
measures of performance. This is good news, because ops-per-nz measures the best
case reuse, and ops-per-ref the worst case. But neither statistic captures all the
variation in the performance.

5.4.2. How large are the supernodes? The supernode size determines the

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 743

(a) Matrix 1: 17758 rows, 16378 (b) Matrix 2: 4929 rows, 2002
supernodes supernodes

EN
w

N @

(number of occurrences)
(number of occurrences)
N

T

LOG_10
[
LOG_10

At [

I 1A2 2A4 ?:5 4A7 5A8 7A0 gl 5;3 164 I Z 8 12 16 20 23 27 31 35
Supernode size Supernode size
(¢) Matrix 3: 4134 rows, 2099 (d) Matrix 14: 7320 rows, 893

supernodes supernodes
3 T T T T T

w

(number of occurrences)
)
(number of occurrences)
)

LOG_10
=
LOG_10
W

4 8 12 16 20 23 27 31 35 1 6 12 18 24 30 36 42 48 54
Supernode size Supernode size

o

FiG. 5.4. Distribution of supernode size for four matrices.

size of the matrix passed to matrix-vector multiply and other Level 2 BLAS routines.
Figure 5.3 shows the average number of columns in the supernodes of the matrices after
amalgamating the relaxed supernodes at the bottom of the column etree (section 2.4).
The average size is usually quite small.

More important than average size is the distribution of supernode sizes. In sparse
Gaussian elimination, more fill tends to occur in the later stages. Usually there is a
large percentage of small supernodes corresponding to the leaves of the column etree,
even after amalgamation. Larger supernodes appear near the root. In Figure 5.4 we
plot the histograms of the supernode size for four matrices chosen to exhibit a wide
range of behavior. In the figure, the number at the bottom of each bar is the smallest
supernode size in that bin. The mark “o” at the bottom of a bin indicates zero
occurrences; otherwise, a “x” is put at the bottom of a bin. Relaxed supernodes of
granularity » = 4 are used. Matrix 1 has 16378 supernodes, all but one of which
have less than 12 columns; the single large supernode, with 115 columns, is the dense
submatrix at the bottom right corner of F'. Matrix 14 has more supernodes distributed
over a wider spectrum; it has 13 supernodes with 54 to 59 columns. This matrix shows
greater speedups over the nonsupernodal codes.

744 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

contour of DGEMV(m, 1) MFLOPS

25 125 1% contour of working set size; 256 KB cache size
T <+ T T T T

row dimension m (1072)
row block size b

i i |
1 30 38 70 20 40 60 80 100 120 140
column dimension n max supernode size t

Fic. 5.5. (a) Contour plot of DGEMV performance. (b) Contour plot of working set in 2-D
algorithm.

W

F1c. 5.6. Parameters of the working set in the 2-D algorithm.

5.4.3. Blocking parameters. In our hybrid algorithm (section 3.2.4), we need
to select appropriate values for the parameters that describe the 2-D data blocking:
panel width w, maximum supernode size ¢, and row block size b. The key considera-
tions are that the active data we access in the inner loop (the working set) should fit
into the cache, and that the matrices presented to the Level 2 BLAS routine DGEMV
should be the sizes and shapes for which that routine is optimized. Here we describe
in detail the methodology we used to choose parameters for the IBM RS/6000-590.

e DGEMYV optimization. As indicated in the last column of Table 5.3, the
majority of the floating-point operations are in the matrix-vector multiply.
The dimensions (m,n) of the matrices in calls to DGEMYV vary greatly de-
pending on the supernode dimensions. Very often, the supernode is a tall
and skinny matrix, that is, m > n. We measured the DGEMYV Mflops rate
for various m and n and present a contour plot in the (m,n) plane in Fig-

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 745

TABLE 5.4
Speedups achieved by each enhancement over GP on the RS/6000-590. The blocking parameters
for SuperLU are w = 8,t = 100, and b = 200.

Matrix GP (Seconds) GP-Mod SupCol SuperLU
1 MEMPLUS 0.40 1.48 1.05 0.68
2 GEMATI11 0.27 1.69 1.29 1.00
3 Rpistl 1.90 2.75 2.24 1.94
4 ORANIG78 13.86 3.55 2.98 3.10
5 McFE 1.55 3.44 3.52 3.52
6 LNspP3937 7.11 3.39 3.86 3.54
7 LNs3937 7.7 3.39 3.85 3.55
8 SHERMANDS 3.98 3.43 4.57 4.23
9 JPwHI91 2.78 3.61 4.21 4.48
10 SHERMAN3 7.43 3.54 5.99 5.27
11 ORSREG1 8.73 3.64 5.86 5.98
12 SAYLR4 17.51 3.67 5.99 6.30
13 SHYY161 163.14 3.65 6.46 5.67
14 GOODWIN 90.63 3.84 6.46 7.16
15 VENKATO1 355.50 3.86 8.33 8.87
16 INACCURA 544.91 4.17 7.24 7.94
17 AF23560 823.47 4.23 9.58 10.47
18 DENSE1000 83.48 4.21 10.22 14.54
19 RAEFSKY3 1571.63 4.30 11.54 14.00
20 Ex11 3439.41 4.36 11.42 13.87
21 WANG3 1841.27 4.34 12.23 15.75
22 RAEFSKY4 3968.16 4.35 11.89 15.39
23 VAVASIS3 12342.97 4.79 13.11 15.63
Mean 3.64 6.67 7.52
Std 0.79 3.69 5.04

ure 5.5(a). Each contour represents a constant Mflops rate. The dashed
curve represents mn = 32K double reals, or a cache capacity of 256 Kbytes.
In the optimum region, we achieve more than 200 Mflops; outside this region,
performance drops either because the matrices exceed the cache capacity or
because the column dimension n is too small.

e Working set. By studying the data access pattern in the inner loop of the
2-D algorithm, lines 6-8 in Figure 3.3, we find that the working set size is the
following function of w, t, and b, as shown in Figure 5.6:

wSs = bxt + (+b)xw + bxw
~—~— R , N——
supernode rows DGEMYV vectors SPA rows

In Figure 5.5(b), we fix two w values and plot the contour lines for WS = 32K
in the (¢,b) plane. If the point (¢,b) is below the contour curve, then the
working set can fit in a cache of 32K double reals, or 256 Kbytes.

Based on this analysis, we use the following rules to set the parameters.

First we choose w, the width of the panel in columns. Larger panels mean more
reuse of cached data in the outer factorization, but also mean that the inner fac-
torization (by the sup-col algorithm) must be applied to larger matrices. We find
empirically that the best choice for w is between 8 and 16. Performance tends to
degrade for larger w.

Next we choose b, the number of rows per block, and ¢, the maximum number of
columns in a supernode. Recall that b and t are upper bounds on the row and column

746 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

TABLE 5.5
Speedups achieved by each enhancement over GP on the MIPS R8000. The blocking parameters
for SuperLU are w = 16,t = 100, and b = 800.

Matrix GP (Seconds) GP-Mod SupCol SuperLU
1 MEMPLUS 0.42 1.51 1.10 0.59
2 GEMAT11 0.29 1.77 1.61 1.11
3 Rpistl 2.03 2.58 2.07 2.07
4 ORANIG78 2.26 2.61 1.61 1.96
5 MCFE 0.60 2.93 2.73 2.61
6 LNsP3937 5.13 3.23 4.17 3.80
7 LNs3937 5.74 3.32 4.22 3.85
8 SHERMANDS 3.70 3.38 5.37 5.22
9 JPwH991 2.50 3.63 4.81 5.21
10 SHERMAN3 8.73 3.78 8.08 7.87
11 ORSREG1 8.18 3.72 7.24 8.10
12 SAYLR4 14.92 3.67 7.65 8.58
13 SHYY161 235.77 3.24 7.11 10.04
14 GOODWIN 103.66 3.45 8.87 11.27
15 VENKATO1 524.46 2.95 8.51 17.22
16 INACCURA 720.86 2.93 6.36 15.13
17 A¥r23560 1095.30 2.95 7.28 18.42
18 DENSE1000 113.28 3.34 11.99 30.21
19 RAEFSKY3 2263.80 2.88 6.54 28.87
20 Ex11 5302.74 2.96 6.44 25.75
21 WANG3 2710.19 2.80 6.31 31.46
22 RAEFSKY4 6005.72 2.85 6.29 27.44
Mean 3.02 5.74 12.13
Std 0.57 2.75 10.48

dimensions of the call to DGEMYV. We choose ¢t = 120 and b ~ 200, which guarantees
that the working set fits in cache (per Figure 5.5(b)), and that we can hope to be
near the optimum region of DGEMYV performance (per Figure 5.5(a)).

Recall that b is relevant only when we use rowwise blocking. This implies that
the 2-D scheme adds overhead only if the updating supernode is small. In the actual
code, the test for a large supernode is

if ncol > 40 and nrow > b then the supernode is large,

where nrow is the number of dense rows below the diagonal block of the supernode
since ncol is the number of dense columns of the supernode updating the panel. In
practice, this choice usually gives the best performance.

The best choice of the parameters w, t, and b depends on the machine architecture
and on the BLAS implementation, but it is largely independent of the matrix struc-
ture. Thus we do not expect each user of SuperLU to choose values for these param-
eters. Instead, our library code provides an inquiry function that returns the param-
eter values, much in the spirit of the LAPACK environment routine ILAENYV. The
machine-independent defaults will often give satisfactory performance. The method-
ology we have described here for the RS/6000 can serve as a guide for users who want
to modify the inquiry function to give optimal performance for particular computer
systems.

5.5. Comparison between SuperLU and multifrontal factorization. A
number of codes for solving unsymmetric linear systems are available at the time of
this writing, differing along several axes: emphasizing unsymmetric versus symmetric
nonzero structure; using direct versus iterative methods; intended to be robust for

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 747

TABLE 5.6
Speedups achieved by each enhancement over GP on the Alpha 21164. The blocking parameters
for SuperLU are w = 16,t = 50, and b = 100.

Matrix GP (Seconds) GP-Mod SupCol SuperLU
1 MEMPLUS 0.17 1.25 1.01 0.45
2 GEMATI11 0.13 1.54 1.26 0.84
3 RpisTl 0.80 1.76 1.77 1.45
4 ORANIG78 0.92 1.74 1.47 1.45
5 MCFE 0.24 1.71 2.01 1.85
6 LNsp3937 2.09 1.93 2.61 2.27
7 LNs3937 2.33 1.94 2.59 2.27
8 SHERMANDS 1.50 1.92 3.13 3.00
9 JPwWHI991 1.06 2.14 3.20 3.20
10 SHERMAN3 3.65 2.10 4.06 3.93
11 ORSREG1 3.41 2.07 3.87 3.91
12 SAYLR4 6.73 2.05 4.01 4.34
13 SHYY161 102.19 1.81 3.97 4.58
14 GOODWIN 46.18 1.92 3.84 4.90
15 VENKATO1 235.01 1.71 4.08 7.00
16 INACCURA 333.24 1.72 3.48 6.07
17 AF23560 497.36 1.68 4.03 7.45
18 DENSE1000 49.29 1.82 4.82 10.38
19 RAEFSKY3 1065.88 1.68 4.00 10.02
20 Ex11 1563.17 1.73 4.12 10.61
21 WANG3 1324.79 1.74 3.92 11.06
22 RAEFSKY4 2939.42 1.73 3.96 10.36
23 VAVASIS3 9477.62 1.83 4.51 11.48
Mean 1.80 3.29 5.34
Std 0.20 1.10 3.69

general problems versus efficient for specific applications; and in the public domain
versus subject to commercial restrictions. A comprehensive comparison of all the
codes against all possible metrics would be valuable but is not the purpose of the
present paper. Rather, to locate the performance of SuperLU in the constellation of
linear solvers, we compare it in detail with one alternative: UMFPACK version 2.1
[7, 8, 9]. This is a modern code that, like SuperLU, emphasizes unsymmetric structure
and robustness for general problems. (A recent report [30] compares SuperLU and GP
with some unsymmetric iterative algorithms.)

UMFPACK uses a multifrontal algorithm. Where the outer loop of a left-looking
algorithm like SuperLU is over columns (or panels of columns) of the factors being
computed, the outer loop of a multifrontal algorithm is over pivots (or blocks of pivots)
being eliminated. All the updates created when a block is eliminated are computed at
once and stored as a dense update matriz. Before a block of pivots is eliminated, all
the update matrices contributing to that block are summed into a frontal matriz. The
elimination step can use Level 2 or Level 3 BLAS because the arithmetic is carried
out on the dense frontal matrix. Some extra intermediate storage is needed to record
update matrices that have not yet been assembled into frontal matrices, and some
extra data movement is needed for the assembly. UMFPACK does not use a column
preordering; rather, it chooses row and column pivots to balance considerations of
stability and sparsity by using approximate Markowitz counts with a pivot threshold.
In principle, the pivot threshold can lead to a less accurate solution than strict partial
pivoting; in practice, the lost accuracy can usually be retrieved by iterative refinement
of the solution. In principle, the freedom to choose both row and column pivots dy-

748 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

TABLE 5.7
Speedups achieved by each enhancement over GP on the UltraSparc-1. The blocking parameters
for SuperLU are w = 8,t = 100, and b = 400.

Matrix GP (Seconds) GP-Mod SupCol SuperLU
1 MEMPLUS 0.36 1.17 1.08 0.58
2 GEMATI11 0.23 1.27 1.16 0.93
3 Rpistl 1.53 1.69 1.56 1.46
4 ORANIG78 1.86 1.64 1.25 1.33
5 MCFE 0.52 1.97 1.85 1.92
6 LNspP3937 4.26 1.86 2.16 2.24
7 LNs3937 4.89 1.94 2.11 2.33
8 SHERMANDS 3.15 1.94 2.28 3.03
9 JPwHI91 2.32 2.18 2.47 3.09
10 SHERMAN3 7.73 2.01 2.84 3.59
11 ORSREG1 7.2 1.97 2.69 3.52
12 SAYLR4 13.88 1.96 2.52 3.84
13 SHYY161 188.72 1.91 3.01 3.43
14 GOODWIN 89.30 1.89 2.62 4.41
18 DENSE1000 94.77 2.05 3.33 4.25
Mean 1.83 2.19 2.66
Std 0.28 0.69 1.22

namically could lead to sparser factors than strict partial pivoting; in practice, some
matrices have sparser factors by one method and some by the other.

We compared UMFPACK and SuperLU on a group of 45 structurally unsym-
metric matrices from a variety of applications, as described in Table 5.8. (This is a
more comprehensive test set than the one we used in the earlier experiments with
other left-looking codes described above.) We performed the experiments on the IBM
RS/6000-590 described earlier. UMFPACK is written in Fortran; we compiled it
with the AIX xIf compiler with -O3 optimization and linked it with the IBM ESSL li-
brary for BLAS calls. We used the parameter settings recommended by UMFPACK’s
authors [7].

UMFPACK does not include an initial column ordering step. For the initial
column ordering in SuperLU, we ran Liu’s multiple minimum degree algorithm [34]
on the structure of AT A. We report times for ordering and factorization separately. In
applications where many matrices with the same nonzero structure but different values
are factored, the cost of column ordering can be amortized over all the factorizations;
in applications where only a single matrix is to be factored, preordering is part of the
solution cost.

Table 5.9 gives time requirements and Table 5.10 gives memory requirements
for the two codes on the matrices from the test set. The memory requirement we
report includes only the memory actually used for the factorization, including working
storage. Figures 5.7 and 5.8 summarize the comparison; each figure plots the relative
time requirements against the relative space requirements for the two codes. Column
preordering time is omitted in Figure 5.7 and included in Figure 5.8.

Neither code always dominates the other in either storage cost or time. Some-
what surprisingly, for 24 of the 45 matrices, the dynamic fill-reducing approach in
UMFPACK seems to be less effective than the static preordering. SuperLU uses less
memory for 60% of the matrices. When ordering time is not counted, SuperLU takes
less time for 77% of the matrices. When ordering time is included, SuperLU takes less
time for 44% of the matrices. For some matrices, such as MEMPLUS and ORANI678, the

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 749

TABLE 5.8
Characteristics of the unsymmetric matrices. StrSym is the fraction of nonzeros matched by
nonzeros in symmetric locations. NumSym is the fraction of nonzeros matched by equal values in
symmetric locations.

Matrix n nnz(A) StrSym NumSym Discipline

CRY10000 10000 49699 9979 .2012 | crystal growth simulation
MEMPLUS 17758 99147 .9830 .5864 | circuit simulation
DW8192 8192 41746 .9699 .9320 | square Dielectric waveguide
GARON2 13535 390607 .9542 .6528 | 2D FEM, Navier-Stokes
JPWH_991 991 6027 .9469 19469 | circuit physics

AF23560 23560 460598 .9465 .0511 | eigenvalue problem
BRAMLEY2 | 17933 | 1021849 9257 .0466 | nonlinear CFD
BRAMLEY1 | 17933 | 1021849 19254 .2806 | nonlinear CFD
LNSP3937 3937 25407 .8686 1272 | fluid flow

LNS_3937 3937 25407 .8686 1272 | fluid flow

WATSONDH 1853 7803 .8590 .6170 | circuit simulation
ADD32 4960 23884 .8310 .3979 | computer component design
SHERMAND 3312 20793 7802 .2882 | petroleum engineering
MHD4800A 4800 102252 7718 .2806 | magnetohydrodynamics
SHYY161 76480 329762 7685 .3085 | fluid flow

SHYY41 4720 20042 7664 3113 | fluid flow

oLM5000 5000 19996 7500 .5000 | hydrodynamics
FS_541_2 541 4285 7227 .1262 | chemical kinetics

MCFE 765 24382 .7088 .0313 | astrophysics

PORES_2 1224 9613 .6613 4689 | petroleum engineering
GOODWIN 7320 324772 .6423 .0194 | fluid mechanics
TOLS4000 4000 8784 .5935 .3642 | aeroelasticity

UuTM5940 5940 83842 .5624 .0708 | plasmas nuclear physics
BBMAT 38744 | 1771722 .5398 .0224 | structure engineering CFD
RWH151 5151 20199 14902 .0000 | Markov chain transition
PSMIGR-1 3140 543162 .4816 .0161 | demography

GRE_1107 1107 5664 .1954 .1954 | discrete simulation
ONETONE2 | 36057 227628 1482 .1020 | nonlinear circuit
RDIST3A 2398 61896 1468 .0074 | chemical engineering
ONETONE1 | 36057 341088 .0989 .0681 | nonlinear circuit
ORANI678 2529 90158 .0728 .0023 | economics

RDIST1 4134 94408 .0620 .0034 | chemical engineering
RADFR1 1048 13299 .0600 .0066 | chemical engineering
RDIST2 3198 56934 .0491 .0037 | chemical engineering
MAHINDAS 1258 7682 .0302 .0166 | economics

LHRO4 4101 82682 .0159 .0010 | chemical engineering
LHRO1 1477 18592 .0085 .0013 | chemical engineering
HYDR1 5308 23752 .0040 .0006 | chemical engineering
EXTR1 2837 11407 .0040 .0005 | chemical engineering
WEST2021 2021 7353 .0039 .0006 | chemical engineering
VAVASIS1 4408 95752 .0033 .0003 | 2D PDE

VAVASIS2 11924 306842 .0025 .0001 | 2D PDE

GEMAT11 4929 33108 .0017 .0003 | electrical power

LHRT71 70304 | 1528092 .0014 .0002 | chemical engineering
VAVASIS3 41092 | 1683902 .0009 .0000 | 2D PDE

MMD ordering takes significantly more time than factorization. It should be noted
that our current approach to ordering can be improved. For example, the column
minimum degree algorithm used in Matlab [26] implements the minimum degree al-
gorithm on AT A without explicitly forming the structure of AT A. In recent work,
Davis, Gilbert, and Ng [10, 45] are investigating better minimum degree algorithms
for unsymmetric matrices that we expect to improve both fill and runtime.

For 9 of the 13 problems whose dimensions are at least 10000, SuperLU outper-

750 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

TABLE 5.9
Performance of SuperLU and UMFPACK on an IBM RS/6000-590 with 768 MB of memory.
Numbers in parenthesis are factorization rate in Mflops. A “+” before a number indicates SuperL U
outperforms UMFPACK. UMFPACK ran out of memory on BBMAT.

Matrix Seconds (Mflops)

SuperLU UMFPACK

order factor

CRY10000 10.35 +1.73 (28) 230 (31)
MEMPLUS 89.58 +1.65 (22) 194 (1)
DW8192 +0.38 +3.69 (28) 5.64 (53)
GARON2 +3.86 42212 (58) | 53.83 (97)
JPWH_991 0.13 0.53 (36) 0.25 (20)
AF23560 +9.22 46211 (80) | 224.89 (112)
BRAMLEY?2 +23.01 +57.97 (93) | 279.42 (101)
BRAMLEY1 +23.00 +58.10 (93) | 274.46 (106)
LNSP3937 +0.40 +1.28 (21) 311 (36)
LNS_3937 +0.40 +1.12 (24) 2,52 (31)
WATSONS 0.22 +0.13 (12) 0.20 (.4)
ADD32 0.24 +0.17 (.9) 0.36 (.3)
SHERMANDS 0.24 +0.77 (29) 0.88 (33)
MHD4800A +0.74 +0.58 (8) 7.10 (65)
SHYY161 +2.33 42204 (47) | 5414 (63)
sHYY41 +0.14 +0.49 (17) 0.69 (13)
oLM5000 0.12 +0.14 (.6) 0.21 (.4)
FS_541.2 0.08 +0.05 (5) 012 (3)
MCFE 1.21 +0.22 (13) 0.25 (17)
PORES_2 +0.10 +0.17 (14) 0.28 (9)
GOODWIN +5.34 +10.31 (49) 22.37 (64)
TOLS4000 +0.06 +0.06 (.6) 023 (1)
UTM5940 +0.93 +3.02 (43) 4.23 (61)
BBMAT +185.77 +821.49 (54) | failed
RW5151 +0.16 +1.24 (27) 1.97 (28)
PSMIGR-1 290.08 187.86 (89) 93.93 (100)
GRE_1107 0.15 0.39 (23) 0.31 (20)
ONETONE2 3.00 +4.98 (26) 7.02 (26)
RDIST3A 0.77 0.48 (24) 044 (17)
ONETONEL 15.77 48.00 (53) | 3887 (79)
ORANI6TS 73.41 +1.32 (24) 1.63 (4)
RDIST1 1.02 0.76 (23) 0.74 (12)
RADFR1 0.09 +0.10 (11) 0.11 (4)
RDIST2 0.50 0.45 (16) 041 (8)
MAHINDAS 0.69 +0.09 (7) 0.17 (2)
LHRO4 2.65 +1.10 (15) .71 (9)
LHRO1 0.46 +0.21 (11) 029 (7)
HYDR1 +0.53 +0.26 (3) 0.81 (3)
EXTR1 +0.13 +0.13 (1) 032 (1)
WEST2021 +0.08 +0.08 (.9) 0.26 (.2)
VAVASIS1 12.49 7.50 (81) 4.40 (46)
VAVASIS2 76.51 38.06 (94) 37.09 (56)
GEMATI11 0.24 +0.26 (4) 0.39 (2
LHRT1 48.23 +23.12 (21) 40.74 (17)
VAVASIS3 1091.72 660.89 (98) | 533.35 (122)

forms UMFPACK both in factorization time and in memory.
6. Remarks.

6.1. The rest of the SuperLU package. In addition to the LU factorization
kernel described in this paper, we have developed a suite of supporting routines to

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 751

TABLE 5.10
Performance of SuperLU and UMFPACK on an IBM RS/6000-590 with 768 MB of memory.
A “+7” before a number indicates SuperLU outperforms UMFPACK. UMFPACK ran out of memory
on BBMAT.

Matrix nnz(F) Memory (MB)
SuperLU UMF SuperLU UMF
CRY10000 +651412 713789 +8.73 9.01
MEMPLUS 356842 157474 7.49 2.29
DW8192 +771299 1315910 +9.87 25.76
GARON2 44744645 8298907 +51.83 144.82
JPWH_991 144499 67703 1.71 1.56
AF23560 +12950915 27979292 +136.35 392.83
BRAMLEY2 | +12652411 29803064 +136.67 376.05
BRAMLEY1 | +12684407 29355331 +137.04 445.65
LNSP3937 4367691 586976 +4.79 14.62
LNS_3937 +373477 494120 +4.76 12.36
WATSONH 41152 17471 0.48 0.23
ADD32 40444 35660 1.45 0.47
SHERMANDH +238905 246358 +3.20 5.16
MHD4800A +227469 1550890 +3.38 31.29
SHYY161 46695357 9524169 +83.29 145.83
SHYY41 195685 167723 2.97 2.67
oLM5000 40002 35004 1.47 0.42
FS_541_2 +16157 18458 0.30 0.28
MCFE +63940 80595 +0.87 1.52
PORES_2 +54028 54405 +0.83 1.01
GOODWIN 42764580 5162683 +31.30 64.33
TOLS4000 8872 8784 0.97 0.16
uTM5940 4994050 1225186 +11.46 22.31
BBMAT 449987183 failed +538.76 failed
RW5151 +379538 440271 +5.12 9.78
PSMIGR-1 8709183 6369782 +88.75 355.98
GRE_1107 110883 79048 +1.40 1.74
ONETONE2 41270569 1337258 +20.92 22.34
RDIST3A 254176 189852 +2.99 3.53
ONETONE1L 44676473 5145165 +56.47 103.99
ORANIG78 804641 122079 7.99 6.49
RDIST1 398008 277947 4.76 2.97
RADFR1 50483 29699 0.72 0.35
RDIST2 230084 151860 2.95 1.72
MAHINDAS 23909 14126 0.54 0.31
LHRO4 342084 313473 +4.62 4.65
LHRO1 66863 60264 1.04 0.85
HYDR1 +81335 111919 2.03 1.61
EXTR1 +34461 36836 0.97 0.48
WEST2021 19179 14615 0.63 0.20
VAVASIS1 1495345 915869 +16.21 18.21
VAVASIS2 5523041 4249821 +59.07 89.19
GEMATI11 87054 67149 1.93 0.82
LHRT71 47508569 8740127 +96.14 124.55
VAVASIS3 +39798599 41746313 +418.65 470.75

solve linear systems, all of which are available from Netlib.# The complete SuperLU
package [12] includes column preordering for sparsity, based on Liu’s multiple mini-
mum degree algorithm [34] applied to the structure of AT A. (As noted above, we plan
to replace this with a new code that does not form A7 A.) SuperLU also includes con-
dition number estimation, iterative refinement of solutions, and componentwise error

4URL: http://www.netlib.org/scalapack/prototype/

752 DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

| SuperLU vs UMFPACK on an IBM RS/6000-590 10 SuperLU vs UMFPACK on an IBM RS/6000-590
10 T T T T
33% 7% 11% X 29%
+
+ + +
ot N S

2 S
<] 4 £ +
qE) + t @ + +
E vy £ sl
N t N

Q
2 + + < 4 + +
oo . + & 10° et
210 L s T* + +
3 ot 4 ¥
=} Iy + =} 33% + 7%
S b aw v 16% 5 : + i
2 _—_ 2 + . +
3 w 3 e
g ! s
@ i f T 9} i o4t

hE T
+ +
4 .
4 £ : 10 i ;
g 10" 10° 10! 10° 10* 10 10’ 10! it
SuperLU / UMFPACK time (ot including column ordering) SuperLU / UMFPACK time (including column ordering)
F1c. 5.7. Compare SuperLU to UMFPACK, Fic. 5.8. Compare SuperLU to UMFPACK,
when MMD ordering time is not included. when MMD ordering time is included.

bounds for the refined solutions. These are all based on the dense matrix routines in
LAPACK [3]. In addition, SuperLU includes a Matlab mex-file interface, so that our
factor and solve routines can be called as alternatives to those built into Matlab.

6.2. Effect of the matrix on performance. The supernodal approach reduces
both symbolic and numeric computation time. But unsymmetric supernodes tend to
be smaller than supernodes in symmetric matrices. The supernode-panel method is
most effective for large problems with enough dense submatrices to use dense block
operations and exploit data locality. In this regard, the dense 1000 x 1000 example
illustrates the largest possible gains. Dense blocks are necessary for top performance in
all modern factorization algorithms, whether left-looking, right-looking, multifrontal,
or any other style.

Our goal has been to develop sparse LU software that works well for problems
with a wide range of characteristics. It is harder to achieve high flop rates on problems
that are very sparse and have no structure to exploit; it is easier on problems that
are denser or become so during elimination. Fortunately, the “hard” matrices by this
definition generally take many fewer floating-point operations than the “easy” ones,
and hence take much less time to factor. Our combination of 1-D and 2-D blocking
techniques gives a good performance compromise for all the problems we have studied,
and with particularly good performance on the largest problems.

6.3. Effect of the computer system on performance. We have studied sev-
eral characteristics of the computing platform that can affect the overall performance,
including the Level 2 BLLAS speed and the cache size. We showed how to systemati-
cally make a good choice of the blocking parameters in the code so as to maximize the
speed of the numeric kernel, using the IBM RS/6000-590 as an example. We expect
this methodology to be applicable to other systems (and BLAS implementations) as
well.

6.4. Possible enhancements. We are considering several possible enhance-
ments to the SuperLU code. One is to switch to a dense LU code at a late stage of
the factorization. It would be difficult to implement this in a sup-col code, because
that code is strictly left-looking, and only one column of the matrix is factored at a

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 753

time. However, this would be much easier in the supernode-panel code. At the time
we decide to switch, we simply treat the rest of the matrix columns (say, d of them)
as one panel, and perform the panel update to A(l:n,n —d+ 1:n). (One might want
to split this panel up for better cache behavior.) Then the reduced matrix at the bot-
tom right corner can be factored by calling an efficient dense code, for example, from
LAPACK [3]. The dense code does not spend time on symbolic structure prediction
and pruning, thus streamlining the numeric computation. We believe that, for large
problems, the final dense submatrix will be big enough to make the switch beneficial.
For example, for a 2-D k x k square grid problem ordered by nested dissection, the
dimension of the final dense submatrix is %k X %k; for a 3-D k x k x k cubic grid, it is
%kQ X %k;Q, if pivots come from the diagonal. The Harwell library code MA48 [16, 18]
employs such a switch to dense code, which has a significant and beneficial effect on
performance.

To enhance SuperLLU’s performance on small and extremely sparse problems, it
would be possible to make a choice at runtime whether to use supernode-panel, sup-
col, or col-col updates. The choice would depend on the size of the matrix A and
the expected properties of its supernodes; it might be based on an efficient sym-
bolic computation of the density and supernode distribution of the Cholesky factor
of AT A [28].

Could we make supernode-panel updates more effective by improving the simi-
larity between the row structures of the columns in a panel? We believe this could
be accomplished with a more sophisticated column permutation strategy. We could
partition the nodes of the column etree into connected subtrees, grouping together
nodes that have common descendants (and therefore the potential for updates from
the same supernodes). Then the overall column order would be a two-level postorder,
first within the subtrees (panels) and then among them. Again, it might be possible
to use information about the Cholesky supernodes of AT A to guide this grouping.

We are also developing a parallel sparse LU algorithm based on SuperLU [11, 33].
In this context, we target large problems, especially those too big to be solved on
a uniprocessor system. Therefore, we plan to parallelize the 2-D blocked supernode-
panel algorithm, which has very good asymptotic behavior for large problems. The
2-D block-oriented layout has been shown to scale well for parallel sparse Cholesky
factorization [31, 40].

Acknowledgments. We thank Rob Schreiber and Ed Rothberg for very help-
ful discussions during the development of SuperLU. Rob pushed us to find a way to
do the supernode-panel update; Ed suggested the ops-per-ref statistic and also pro-
vided access to the SGI MIPS R8000. We are grateful to Tim Davis, Steve Vavasis,
and Randy Bramley for making their matrices available to us. We thank the refer-
ees for their suggestions to improve the presentation of the paper. The Institute for
Mathematics and Its Applications at the University of Minnesota provided the fertile
environment in which this work began.

REFERENCES

[1] R. AGArRwAL, F. GUSTAVSON, P. PALKAR, AND M. ZUBAIR, A performance analysis of the
subroutines in the ESSL/LAPACK call conversion interface (CCI), IBM T.J. Watson
Research Center, Yorktown Heights, NY, 1994.

[2] P. R. AMESTOY AND I. DUFF, Vectorization of a multiprocessor multifrontal code, Int. J. Su-
percomputer Appl., 7 (1993), pp. 64-82.

[3] E. ANDERSON ET AL., LAPACK User’s Guide, 2nd ed., STAM, Philadelphia, PA, 1995.

754

[4]

(5]

DEMMEL, EISENSTAT, GILBERT, LI, AND LIU

@]

. ASHCRAFT AND R. GRIMES, The influence of relazed supernode partitions on the multifrontal
method, ACM Trans. Math. Software, 15 (1989), pp. 291-309.

C. ASHCRAFT, R. GRIMES, J. LEwis, B. PEYTON, AND H. SIMON, Progress in sparse matriz
methods for large sparse linear systems on vector supercomputers, Internat. J. of Super-
computer Applications, 1 (1987), pp. 10-30.

J. BiLmESs, K. Asanovic, J. DEMMEL, D. LaM, AND C.-W. CHIN, Optimizing Matriz Multiply

Using PHiPAC: A Portable, High-Performance, ANSI C Coding Methodology, Tech. Re-
port CS-96-326, Computer Science Department., University of Tennessee, Knoxville, TN,
May 1996. (LAPACK Working Note #111).

T. A. Davis, User’s Guide for the Unsymmetric-Pattern MultiFrontal Package (UMFPACK),
Tech. Report TR-95-004, Computer and Information Sciences Department, University of
Florida, Gainesville, FL, January 1995.

T. A. Davis AND I. S. DUFF, A combined unifrontal/multifrontal method for unsymmetric
sparse matrices, Tech. Report TR-95-020, Computer and Information Sciences Depart-
ment, University of Florida, Gainesville, FL, 1995.

T. A. Davis anNnD I. S. DUFF, An unsymmetric-pattern multifrontal method for sparse LU
factorization, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 140-158.

T. A. Davis, J. R. GILBERT, E. NG, AND B. W. PEYTON, A column approzimate minimum de-
gree ordering algorithm, Presented at Sixth STAM Symposium on Applied Linear Algebra,
Snowbird, UT, 1997.

J. W. DEMMEL, J. R. GILBERT, AND X. S. L1, An Asynchronous Parallel Supernodal Algorithm
for Sparse Gaussian Elimination, Tech. Report UCB//CSD-97-943, Computer Science
Division, University of California, Berkeley, CA, 1997.

J. W. DEMMEL, J. R. GILBERT, AND X. S. L1, SuperLU User’s Guide, Tech. Report UCB//CSD-
97-944, Computer Science Division, University of California, Berkeley, CA, 1997.

D. DopsON AND J. LEWIS, Issues relating to extension of the basic linear algebra subprograms,
ACM SIGNUM Newsletter, 20 (1985), pp. 2-18.

J. J. DONGARRA, J. D. CrOZ, S. HAMMARLING, AND R. J. HANSON, An extended set of basic
linear algebra subroutines, ACM Trans. Math. Software, 14 (1988), pp. 1-17, 18-32.

I. DUFF AND J. REID, The multifrontal solution of indefinite sparse symmetric linear equations,

ACM Trans. Math. Software, 9 (1983), pp. 302-325.

. DUFr AND J. K. REID, The design of MA48, a code for the direct solution of sparse unsym-
metric linear systems of equations, ACM Trans. Math. Software, 22 (1996), pp. 187-226.

. S. DurF, R. GRIMES, AND J. LEWIS, Sparse matriz test problems, ACM Trans. Math. Soft-
ware, 15 (1989), pp. 1-14.

. S. DUFF AND J. K. REID, MA48, a Fortran Code for Direct Solution of Sparse Unsymmetric
Linear Systems of Equations, Tech. Report RAL-93-072, Rutherford Appleton Laboratory,
Oxon, UK, 1993.

S. C. EISENSTAT, J. R. GILBERT, AND J. W. Liu, A supernodal approach to a sparse partial

pivoting code, in Householder Symposium 12, Los Angeles, CA, 1993.

S. C. EI1SENSTAT AND J. W. H. Liu, Ezploiting structural symmetry in sparse unsymmetric
symbolic factorization, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 202-211.

S. C. E1SENSTAT AND J. W. H. Liu, Exploiting structural symmetry in a sparse partial pivoting
code, STAM J. Sci. Statist. Comput., 14 (1993), pp. 253-257.

J. A. GEORGE AND E. NG, An implementation of Gaussian elimination with partial pivoting
for sparse systems, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 390-409.

J. A. GEORGE AND E. Ng, Symbolic factorization for sparse Gaussian elimination with partial
pivoting, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 877-898.

J. R. GILBERT, Predicting structure in sparse matriz computations, SIAM J. Matrix Anal.
Appl., 15 (1994), pp. 62-79.

J. R. GILBERT AND J. W. H. Liu, Elimination structures for unsymmetric sparse LU factors,
SIAM J. Matrix Anal. Appl., 14 (1993), pp. 334-352.

J. R. GILBERT, C. MOLER, AND R. SCHREIBER, Sparse matrices in Matlab: Design and imple-
mentation, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 333-356.

J. R. GILBERT AND E. NG, Predicting structure in nonsymmetric sparse matriz factorizations,
in Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, and J. W. H.
Liu, eds., Springer—Verlag, New York, Berlin, 1993.

J. R. GILBERT, E. G. NG, AND B. W. PEYTON, An efficient algorithm to compute row and
column counts for sparse Cholesky factorization, STAM J. Matrix Anal. Appl., 15 (1994),
pp. 1075-1091.

J. R. GILBERT AND T. PEIERLS, Sparse partial pivoting in time proportional to arithmetic
operations, STAM J. Sci. Statist. Comput., 9 (1988), pp. 862-874.

—

—

—

(30]

(31]

A SUPERNODAL APPROACH TO SPARSE PARTIAL PIVOTING 755

J. R. GILBERT AND S. TOLEDO, An assessment of incomplete LU preconditioners for nonsym-
metric linear systems, manuscript, 1997.

A. GupTAa AND V. KUMAR, Optimally scalable parallel sparse Cholesky factorization, in Proc.
7th STAM Conference on Parallel Processing for Scientific Computing, D.H. Bailey et. al.,
eds., STAM, Philadelphia, 1995, pp. 442-447.

International Business Machines Corporation Engineering and Scientific Subroutine Library,
Guide and Reference, Version 2 Release 2, Order No. SC23-0526-01, 1994.

X. S. L1, Sparse Gaussian Elimination on High Performance Computers, Tech. Report
UCB//CSD-96-919, Computer Science Division, Ph.D. dissertation, University of Cali-
fornia, Berkeley, CA, 1996.

J. W. L1u, Modification of the minimum degree algorithm by multiple elimination, ACM Trans.
Math. Software, 11 (1985), pp. 141-153.

J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134-172.

PDS: The performance database server, http://performance.netlib.org/performance/, May
1995.

E. G. Na AND B. W. PEYTON, Block sparse Cholesky algorithms on advanced uniprocessor
computers, SIAM J. Sci. Statist. Comput., 14 (1993), pp. 1034-1056.

E. ROTHBERG AND A. GUPTA, Efficient sparse matriz factorization on high-performance
workstations—ezploiting the memory hierarchy, ACM Trans. Math. Software, 17 (1991),
pp. 313-334.

E. ROTHBERG AND A. GUPTA, An evaluation of left-looking, right-looking and multifrontal
approaches to sparse Cholesky factorization on hierarchical-memory machines, Internat.
J. High Speed Comput., 5 (1993), pp. 537-593.

E. E. ROTHBERG AND A. GuUPTA, An efficient block-oriented approach to parallel sparse

Cholesky factorization, in Supercomput., 1993, pp. 503-512.

. H. SHERMAN, On the Efficient Solution of Sparse Systems of Linear and Nonlinear Equa-
tions, Ph.D. thesis, Yale University, New Haven, CT, 1975.

. H. SHERMAN, Algorithm 533: NSPIV, a FORTRAN subroutine for sparse Gaussian elimi-
nation with partial pivoting, ACM Trans. Math. Software, 4 (1978), pp. 391-398.

. SIMON, P. Vu, AND C. YANG, Performance of a Supernodal General Sparse Solver on the
CRAY Y-MP: 1.68 GFLOPS with Autotasking, Tech. Report TR SCA-TR-117, Boeing
Computer Services, Seattle, WA, 1989.

. A. Vavasis, Stable finite elements for problems with wild coefficients, STAM J. Numer. Anal.,
33 (1996), pp. 890-916.

S. I. LARIMORE, An Approzimate Minimum Degree Ordering Algorithm, Tech. Report CISE-

TR-98-016, Department of Computer and Information Science and Engineering, University
of Florida, Gainesville, FL, 1998.

= =

wn

